Enumerating Sets

A language is said to be **recursive** if there is a TM which halts on all inputs and accepts the language. The notions corresponding to r.e. sets and recursive sets for functions are partial recursive and total recursive functions respy.

A central notion is enumerating a set (or making a list of its elements). This is not usually formally defined, but neverthless very important. I will give a formal definition here. First, note that an infinite set is countable iff it is in 1-1 correspondance with the integers. Countability is thus a necessry condition for enumerability. We will also require that the process of making the list should not get into cycling. More precisely, we say that a set S can be enumerated (or "we can make a list of the set") iff there is a total recursive function $f: \mathbf{N} \to S$ which is onto. So, the "list" $\{f(1), f(2), f(3), \ldots\}$ (i) contains all elements of S (Note : an element may appear more than once !!) and (ii) does not contain any elements not in S. The fact that f is total recursive means that there is an enumeration process, which makes any finite initial piece of the list in finite time. An equivalent (why?) definition for infinite sets S is : S can be enumerated iff there is a TM which prints out strings, so that (i) any element in S is printed out at some finite time and (ii) only strings in S are ever printed out. Some important enumerable sets are :

- (a) $\{(i, j) : i, j \in \mathbb{N}\}$ can be enumerated.
- (b) For any finite alphabet Σ , Σ^* is enumerable.
- (c) Any r.e. set is enumerable : Run through a list of pairs (i, j) (see a) and for each pair, if the *i* th string w_i (see b) is acepted by the TM in exactly *j* steps, then "print out" w_i .
- (d) The set of all TM's is enumerable.
- (e) The set of all polynomial time bounded TM's is enumerable. (We will see this later).