
LINEAR PROGRAMMING

We consider Linear Programming problem in the following (standard) form.
(where A is an m× n matrix of rank m , c is 1× n, b is m× 1 and x is n× 1) :

Max c · x : Ax = b ; x ≥ 0.

[Note : Inequality constraints can be converted to this form by adding “slack”
variable. Also, we can do Gaussian Elimination on A and if it does not have
rank m, we either find that the system of equations has no solution, whence we
may stop or we can find and discard redundent equations.]

A basis is a set of m variables whose corresponding columns in A are linearly
independent; i.e., the m×m matrix B formed by the columns corresponding to
these variables is non-singular. These m variables are called the “basic variables”
(for this basis) and the rest n − m variables are called “non-basic”. The basic

solution corresponding to this basis is the unique solution to the system of
equations Ax = b obtained by setting all the non-basic variables to 0. (So, the
solution will be B−1b.) If the basic solution is feasible (i.e., if all basic variables
are non-negative), then it is called a basic feasible solution (bfs). The simplex
algorithm moves from one bfs to another until we reach an optimal solution
(there is always as optimal solution which is a bfs, as we will see).

Assume for the moment, that we have on hand a starting bfs. It will be
convienient to rearrange the order of the variables, so the first m variables are
basic (for this bfs). Then the LP can be written as :

Max cBxB + cNxN

BxB + NxN = b

xB , xN ≥ 0, (1)

where we have partitioned c into the basic part (subscripted by B) and the
non-basic part and also with x. Noting that B is invertible, the equations give
us xB = B−1b−B−1NxN . Thus we may substitute this for xB and thus write
LP as :

Max cBB−1b + (cN − cBB−1N)xN

xB = B−1b − B−1NxN

xB , xN ≥ 0.

Optimality Condition : Now if

cN − cBB−1N ≤ 0 (2)

then since in every feasible solution, the variables xN must all be non-negative
and in the current bfs, they are all 0, we have an optimal solution. We may
stop. Note that incidentally, we have found an optimal solution which is a bfs.

A general step : If a component of cN − cBB−1N , say the coefficient of xj

is positive, then the simplex algorithm will “bring the variable xj into the basis”;
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i.e., it will go to a new bfs with xj as a basic variable. Some other variable which
is in the current bfs, must leave. To see which one, imagine increasing xj from
its current value of 0. The question is how much we can increase xj . We must
maintain xB = B−1b − B−1NxN ; so as xj is increased, we must change also
xB ; indeed xB is changed by the column of the matrix B−1N corresponding to
xj multiplied by xj . There are two possibilities :

Unboundedness : If the change in xB is by a non-negative vector, then we
may increase xj without bound and so we may increase the objective function
value without bound. In this case, we stop and say that the LP is unbounded.
Note that the “change vector” gives us a direction d with the following properties
in this case :

Ad = 0 ; d ≥ 0 ; c · d > 0. (3)

It is clear that if we have such a vector, the LP is unbounded. [The statement
an “LP is unbounded” always means that if it is a Maximizatioin LP, then the
objective value can be increased without upper bound remaining feasible. If it
is a Minizatioin LP, then the objective value can be decreased without lower
bound remaining feasible.]

Moving to a better bfs : In the other case, there is a largest value of
xj such that beyond that one of the xB becomes negative. Then we increase
xj to this value and put it into the basis. We change the xB accordingly and
delete from the basis the variable among xB which has become 0. [It is a simple
exercise to see that we have a new basis.]

If the increase in xj is strictly positive, then the objective function value has
strictly inreased. So, we have made progress. If we always make such progress,
then since the number of bfs ’s is at most

(

n

m

)

, we will clearly terminate (albeit
in exponentail number of steps in some cases). Unfortunately, this is not always
the case and the algorithm can cycle.

Avoiding Cycling There are many methods for avoiding cycling. The
simplest is the “perturbation method” in which the right hand side b is perturbed
by infinetismals; we add ε1 to b1, ε2 to b2, ........ εm to bm where

1 >> ε1 >> ε2 >> . . . εm.

[The ε’s may be kept as symbols.] Now we claim that for each basis, the basic
variables are all strictly positive. [This would suffice, because then the increase
in xj is obviously strictly positive.] Thus it suffices to prove that B−1b′ has no
zero component for any basis matrix B, where b′ is the perturbed right hand
side. If it did, then we will have that a row of B−1 - say v - times the vector
b′ is zero. Since the perturbations are infitismal, (but the entries of B−1 do
not involve any infinitismals) this means that v · b = 0. Thus v · (b′ − b) = 0.
Since ε2, ε3, . . . are infitismally smaller than ε1, this implies that v1 = 0. Now
we must then have (since ε3, ε4 . . . are infinitsmally smaller than ε2) v2 = .....
Thus v = 0; but this contradcits the non-singularity of B−1.

Starting bfs This is done by what is called Phase I. We first multiply
the equations as necessary by -1, so b has all non-ngeative components. We
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introduce a vector y of m artificial variables and first solve the LP :

Max −

m
∑

j=1

yj

Ax + Iy = b

x, y ≥ 0.

For this problem, the y ’s form an obvious starting feasible basis.
Lemma The phase I LP is bounded. If the optimal solution value of the

Phase I LP is 0, then we get a bfs for the original LP. if it is more than 0, then
the original LP is infeasible.

Theorem If a LP has a finite optimal value, then the above method (upon
termination) yields a bfs, which is an optimal solution to the LP.

Duality

Primal LP

Max c · x

Ax = b

x ≥ 0.

Dual LP

Min y · b

yA ≥ c

Lemma (Weak Duality) : If x is a feasible solution to the Primal LP and y

a feasible solution to the Dual LP, then we have

c · x ≤ y · b.

Proof Since x ≥ 0, and yA ≥ c, we have c · x ≤ yAx. Since Ax = b, we
have yAx = yb.

Theorem (Strong Duality) If the Primal LP has a finite optimal solution,
then so does the dual LP and their values are equal. If the Primal LP is
unbounded, then the Dual LP is infeasible. If the Primal LP is infeasible, then
the Dual LP is unbounded or infeasible.

Proof If the Primal has a finite optimal solution, then it has a optimal
bfs; wlg assume the LP is written in the form (1) with the basic vraibles of
the optimal bfs as the first m varibles. Consider the solution y = cBB−1.
Clearly, yA = (cB , cBB−1N). From the optimality condition (2), we see that
y is feasible to the Dual LP. But we also have yb = cBB−1b = c · x; so by
weak Duality theorem, we have that y, x are optimal to the Dual and Primal
respectively proving the first part. If the primal is unbounded, then we have
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by (3), a vector d with Ad = 0, d ≥ 0 and c · d > 0. If in addition, the Dual
has a feasible solution y, then we would have yAd = 0, but yAd ≥ c · d > 0, a
contradiction. So we get the second statement. To prove the third statement,
we may take the dual of the Dual LP (after adding slack variables etc.) and we
see that we get the Primal LP (Exercise). The applying the first statement, we
get the third.
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