Reductions, Oracles and a Hierarchy of Undecidable Problems

We defined a language A to be reducible to a language B iff there is a total recursive map f such that $\forall x, x \in A$ iff $f(x) \in B$. In words, this is equivalent to saying that if I am given an “oracle” (a subroutine) (we will always assume that an “oracle” halts in finite time on all inputs) which solves (membership in) B, then with just one call to this oracle, I can answer membership in A.

This notion of reduction is called many-one reduction and we write $A \leq_m B$ to denote that A is “many-one” reducible to B.

Note that every r.e. set is many-one reducible to L_u. We say that an r.e. set is r.e. complete if every r.e. set is many-one reducible to it. Thus, L_u is r.e. complete. We showed a many-one reduction of L_u to NONEMPTY = $\{M : L(M) \neq \emptyset\}$; so also NONEMPTY is r.e. complete. (Why is that what we showed is not a many-one reduction of L_u to EMPTY?)

Another natural notion of reduction is when we allow any finite number of oracle calls. This is called a Turing reduction.

Definition A set A is Turing reducible to a set B denoted $A \leq_T B$ if there is a halting TM M with access to an oracle for B which accepts A.

If B is recursive and $A \leq_T B$, then A is recursive too. If B is recursive, then the oracle can be “implemented” to run in finite time. But, even if B is not recursive, we still can define TM’s as above with an oracle for B; it is just a hypothetical machine we use to study the relative hardness of A and B. A TM with an oracle for B is often written M^B. We will say that two sets A and B are equivalent (in hardness) - written - $A \equiv_T B$, if each of them is reducible to the other. All recursive sets are equivalent (Why?)

Are there sets harder than all r.e. sets, i.e., harder than L_u? Indeed, there is an infinite hierarchy of harder and harder sets of which the r.e. sets form only the first level. Consider TM’s with L_u as an oracle and suppose $L_u^{(2)}$ is the universal language for them; i.e.,

$$L_u^{(2)} = \{< w, M^{L_u} > : M^{L_u} \text{ accepts } w\}.$$

Theorem $L_u^{(2)} \not\leq_T L_u$.

The proof is word for word almost the same as the proof that L_u is not recursive. Now we can define the universal language for TM’s with $L_u^{(2)}$ as oracle etc...