Algorithms

NP-completeness of the Subset Sum problem

The Subset Sum (SS) problem is : Given a set of n+1 integers $a_1, a_2, \ldots a_n, b$ is there a subset of $a_1, a_2, \ldots a_n$ that sums exactly to b? It is easy to show that this problem is in NP.

We now prove that CNF-SAT is reducible to SS. Suppose we are given a Boolean formula $F(x_1, x_2, \ldots, x_n)$. For convinience, we let $x_{i+n} = \overline{x_i}$ for $i = 1, 2, \ldots n$. We introduce variables X_1, X_2, \ldots, X_{2n} corresponding respectively to the Boolean variables x_1, x_2, \ldots, x_{2n} . The integer variables will assume values 0 or 1; 0 will correspond to Boolean False and 1 to Boolean True. Then, we write the following system of inequalities and equations in the X_1, X_2, \ldots, X_{2n} which we will show is valid iff F is satifiable :

$$1 \ge X_i \ge 0 \text{ for } i = 1, 2, \dots 2n$$
$$X_i + X_{i+n} = 1 \text{ for } i = 1, 2, \dots n$$
For each clause C in F, $\sum_{x_i \in C} X_i \ge 1$

The last condition gives us one inequality per clause. I have used the somewhat loose notation x_i "belongs" to C to denote that x_i is one of the disjuncts involved in C.

Now consider the decision problem : Does there exist a set of integers $X_1, X_2, \ldots X_{2n}$ satisfying the system of inequalities ? We will reduce this problem in turn to Subset Sum. First, we introduce some new integer variables called "slack variables" to convert the inequalites corresponding to the clauses into equations. So $X_{i_1} + X_{i_2} + \ldots X_{i_k} \ge 1$ will be replaced by $X_{i_1} + X_{i_2} + \ldots X_{i_k} - Y_1 - Y_2 \ldots Y_{k-1} = 1$; $1 \ge Y_1, Y_2, \ldots Y_{k-1} \ge 0$ where $Y_1, Y_2, \ldots Y_{k-1}$ are new variables not used elsewhere. Let us call the vector

of all variables including the slack variables z. Then we can write the new system in matrix notation (with a suitable matrix A and a suitable vector c) as :

$$Az = c \qquad 1 \ge z \ge 0.$$

(Note : I am using 1,0 to indicate the vector of all 1 's and all 0's respectively in the last line.) z has at most l = 2nk components where k is the number of clauses in F. We will now "aggregate" all the equations into one to get a SubsetSum problem. Note that the entries of A are all $0,\pm 1$. Let m be the number of rows of A and for $i = 1, 2, \ldots m$, let a_i denote the i th row of A. For any z with 0-1 components, the dot product of a_i and z is an integer between -l and +l. So for 0-1 vectors z, the vector Az has m components each between -l and l. The following lemma will be used directly :

Lemma Suppose two integer vectors u and v each has m integer components in the range -l to l. Then u = v iff

$$\sum_{i=1}^{m} (2l+1)^{i} u_{i} = \sum_{i=1}^{m} (2l+1)^{i} v_{i}.$$

Proof : (\Rightarrow) is obvious.

To prove the other way, suppose

$$w = \sum_{i=1}^{m} (2l+1)^{i} u_{i} - \sum_{i=1}^{m} (2l+1)^{i} v_{i} = 0.$$

Further, for contradiction, assume that $u \neq v$. Let k be the largest index i so that $u_i \neq v_i$. Without loss of generality, assume that $u_k > v_k$. Then this contributes at least $(2l+1)^k$ to w. This contribution must be cancelled by i < k to get w to be zero. But

$$\left|\sum_{i=1}^{k-1} (2l+1)^{i} u_{i} - \sum_{i=1}^{k-1} (2l+1)^{i} v_{i}\right| \le (2l) \sum_{i=1}^{k-1} (2l+1)^{i} = (2l+1)^{k} - 1.$$

So cancellation is not possible proving the lemma by contradition.

[Here is the intuition behind the lemma : think of u, v as integers represented to the base 2l + 1. The sums in the lemma are precisely their values as integers.]

Now, using the lemma, it is clear that the system

$$Az = c$$
 $1 \ge z \ge 0$

has an integer solution iff the following one equation has a 0-1 solution :

$$\sum_{i=1}^{m} (2l+1)^{i} (a_{i} \cdot z) = \sum_{i=1}^{m} (2l+1)^{i} c_{i}.$$

The last is a SubsetSum Problem. (Why?)