
Algorithms

NP-completeness of the Subset Sum problem

The Subset Sum (SS) problem is : Given a set of n+1 integers a1, a2, . . . an, b

is there a subset of a1, a2, . . . an that sums exactly to b ? It is easy to show

that this problem is in NP.

We now prove that CNF-SAT is reducible to SS. Suppose we are given

a Boolean formula F (x1, x2, . . . xn). For convinience, we let xi+n = xi for

i = 1, 2, . . . n. We introduce variables X1, X2, . . .X2n corresponding respec-

tively to the Boolean varibles x1, x2, . . . x2n. The integer variables will as-

sume values 0 or 1; 0 will correspond to Boolean False and 1 to Boolean

True. Then, we write the following system of inequalities and equations in

the X1, X2, . . .X2n which we will show is valid iff F is satifiable :

1 ≥ Xi ≥ 0 for i = 1, 2, . . . 2n

Xi + Xi+n = 1 for i = 1, 2, . . . n

For each clause C in F ,
∑

xi∈C Xi ≥ 1.

The last condition gives us one inequality per clause. I have used the

somewhat loose notation xi “belongs” to C to denote that xi is one of the

disjuncts involved in C.

Now consider the decision problem : Does there exist a set of integers

X1, X2, . . .X2n satisfying the system of inequalities ? We will reduce this

problem in turn to Subset Sum. First, we introduce some new integer vari-

ables called “slack variables” to convert the inequalites corresponding to

the clauses into equations. So Xi1 + Xi2 + . . .Xik
≥ 1 will be replaced by

Xi1 + Xi2 + . . .Xik
− Y1 − Y2 . . . Yk−1 = 1 ; 1 ≥ Y1, Y2, . . . Yk−1 ≥ 0 where

Y1, Y2, . . . Yk−1 are new variables not used elsewhere. Let us call the vector
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of all variables including the slack variables z. Then we can write the new

system in matrix notation (with a suitable matrix A and a suitable vector c)

as :

Az = c 1 ≥ z ≥ 0.

(Note : I am using 1,0 to indicate the vector of all 1 ’s and all 0’s re-

spectively in the last line.) z has at most l = 2nk components where k is

the number of clauses in F . We will now “aggregate” all the equations into

one to get a SubsetSum problem. Note that the entries of A are all 0,±1.

Let m be the number of rows of A and for i = 1, 2, . . .m, let ai dentoe the

i th row of A. For any z with 0-1 components, the dot product of ai and

z is an integer between −l and +l. So for 0-1 vectors z, the vector Az has

m components each between −l and l. The following lemma will be used

directly :

Lemma Suppose two integer vectors u and v each has m integer com-

ponents in the range −l to l. Then u = v iff
m∑

i=1

(2l + 1)iui =
m∑

i=1

(2l + 1)ivi.

Proof : (⇒) is obvious.

To prove the other way, suppose

w =
m∑

i=1

(2l + 1)iui −
m∑

i=1

(2l + 1)ivi = 0.

Further, for contradiction, assume that u 6= v. Let k be the largest index i

so that ui 6= vi. Without loss of generality, assume that uk > vk. Then this

contributes at least (2l + 1)k to w. This contribution must be cancelled by

i < k to get w to be zero. But

|
k−1∑

i=1

(2l + 1)iui −
k−1∑

i=1

(2l + 1)ivi| ≤ (2l)
k−1∑

i=1

(2l + 1)i = (2l + 1)k − 1.

2



So cancellation is not possible proving the lemma by contradition.

[Here is the intuition behind the lemma : think of u, v as integers repre-

sented to the base 2l + 1. The sums in the lemma are precisely their values

as integers.]

Now, using the lemma, it is clear that the system

Az = c 1 ≥ z ≥ 0

has an integer solution iff the following one equation has a 0-1 solution :

m∑

i=1

(2l + 1)i(ai · z) =
m∑

i=1

(2l + 1)ici.

The last is a SubsetSum Problem. (Why? )
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