
Turing Machines

A function f : Z → Z is “effectively computable” if there is an “algo-
rithm” takes as input any integer x and halts in a finite number of steps,
returning f(x). It is easy to see that the “cardinality” of the set of all func-
tions is the same as that of the reals; but if one assumes that an “algorithm”
means a finite piece of code (over a finite alphabet), then the cardinality of
the set of algorithms is the same as that of the integers (even forgetting the
requirement of terminating on all inputs). So by Cantor’s argument (which
we recall), there are functions which are not computable (even if we hypo-
thetically allow non-terminating algorithms.)

Definition of Turing Machines A TM has one read/write tape. It is
in a current state and is reading a symbol on the tape. Based only on these
two pieces of information, it goes to a next state, changes the current symbol
to another (possibly the same) one and moves its head to the right or left.

A single operation is very simple. Also step-counting, (measuring running
time) is simple.

TM ’s are robust : TM’s with multiple tapes can be simulated by single
tape machines. Many other modifications like multiple heads on the same
tape, different write-alphabet, ability to stay at the same cell (in addition
to possibly moving right / left) etc. all can be simulated by the original
defintion of TM.

A language is called recursively enumerable (or r.e.) if there is a TM
accepting it. Are there languages which are not r.e. ?

Definition of non-deterministic Turing Machines. The class of sets ac-
cepted by non-det TM’s are precisely the r.e. sets.
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