On the Lindell-Pinkas Secure Computation of Logarithms: From Theory to Practice

Raphael S. Ryger
Yale University
New Haven, CT USA
ryger@cs.yale.edu

Onur Kardes
Stevens Institute of Technology
Hoboken, NJ USA
onur@cs.stevens.edu

Rebecca N. Wright
Rutgers University
Piscataway, NJ USA
rebecca.wright@rutgers.edu

April 26, 2008
Overview

<table>
<thead>
<tr>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Lindell-Pinkas (\ln x) protocol</td>
</tr>
<tr>
<td>The division problem</td>
</tr>
<tr>
<td>Secure non-integer scaling of shared values</td>
</tr>
<tr>
<td>Implementation and performance</td>
</tr>
<tr>
<td>Conclusion</td>
</tr>
</tbody>
</table>

Introduction

The Lindell-Pinkas \(\ln x\) protocol

The division problem

Secure non-integer scaling of shared values

Implementation and performance

Conclusion
A variety of PPDM settings

Introduction
PPDM settings
SMC and PPDM
Modular SMC
Shares to shares
Toward practice
Building blocks
The Lindell-Pinkas $l_{\ln x}$ protocol
The division problem
Secure non-integer scaling of shared values
Implementation and performance
Conclusion

P3DM '08 Lindell-Pinkas Secure Computation of Logarithms
PPDM dilemmas:

- what data to expose for analysis;
- what analyses to allow.

Secure multiparty computation – SMC – theoretically eliminates the former, reducing PPDM to the latter.

Generic approaches to achieving SMC are computationally expensive for non-trivial algorithms and large amounts of input data, making them impractical for PPDM.

Lindell, Pinkas, 2000: A modular, hybrid SMC approach, combining building blocks implemented through generic or specialized technologies, can be practical for PPDM!

Lindell, Pinkas, 2000: Logarithm computation, an important building block, is itself amenable to this approach.
PPDM dilemmas:

- what data to expose for analysis;
- what analyses to allow.

Secure multiparty computation – SMC – theoretically eliminates the former, reducing PPDM to the latter.

Generic approaches to achieving SMC are computationally expensive for non-trivial algorithms and large amounts of input data, making them impractical for PPDM.

Lindell, Pinkas, 2000: A modular, hybrid SMC approach, combining building blocks implemented through generic or specialized technologies, can be practical for PPDM!

Lindell, Pinkas, 2000: Logarithm computation, an important building block, is itself amenable to this approach.
PPDM dilemmas:
- **what data to expose** for analysis;
- **what analyses to allow**.

Secure multiparty computation – SMC – theoretically eliminates the former, reducing PPDM to the latter.

Generic approaches to achieving SMC are computationally expensive for non-trivial algorithms and large amounts of input data, making them *impractical for PPDM*.

Lindell, Pinkas, 2000: A **modular, hybrid** SMC approach, combining building blocks implemented through generic or specialized technologies, can be *practical for PPDM*!

Lindell, Pinkas, 2000: **Logarithm** computation, an important building block, is itself amenable to this approach.
PPDM dilemmas:

– what data to expose for analysis;
– what analyses to allow.

Secure multiparty computation – SMC – theoretically eliminates the former, reducing PPDM to the latter.

Generic approaches to achieving SMC are computationally expensive for non-trivial algorithms and large amounts of input data, making them impractical for PPDM.

Lindell, Pinkas, 2000: A modular, hybrid SMC approach, combining building blocks implemented through generic or specialized technologies, can be practical for PPDM!

Lindell, Pinkas, 2000: Logarithm computation, an important building block, is itself amenable to this approach.
PPDM dilemmas:
- what data to expose for analysis;
- what analyses to allow.

Secure multiparty computation – SMC – theoretically eliminates the former, reducing PPDM to the latter.

Generic approaches to achieving SMC are computationally expensive for non-trivial algorithms and large amounts of input data, making them impractical for PPDM.

Lindell, Pinkas, 2000: A modular, hybrid SMC approach, combining building blocks implemented through generic or specialized technologies, can be practical for PPDM!

Lindell, Pinkas, 2000: Logarithm computation, an important building block, is itself amenable to this approach.
Monolithic vs. modular SMC

Introduction
PPDM settings
SMC and PPDM
Modular SMC
Shares to shares
Toward practice
Building blocks
The Lindell-Pinkas protocol
The division problem
Secure non-integer scaling of shared values
Implementation and performance
Conclusion

monolithic

modular, hybrid

scalar product
logarithm
phase 1
phase 2
product
minindex

generic SMC
specialized SMC
ordinary computation
Shares to shares: the key to modularity with security

Introduction
PPDM settings
SMC and PPDM
Modular SMC
Shares to shares
Toward practice
Building blocks
The Lindell-Pinkas $ln x$ protocol
The division problem
Secure non-integer scaling of shared values
Implementation and performance
Conclusion
Toward the Lindell-Pinkas theses in practice

- Yang, Wright, Kardes, Ryger, Feigenbaum, 2004, 2005, 2006: Design and implementation of secure two-party Bayes-net structure discovery in arbitrarily partitioned data. Using ...

- (Increasing available computing power.)

- A circuit-generation library suitable for use with Fairplay.

- A development methodology and a coordination framework for modular multiparty protocols.

- Implementations of building-block modules ...
Toward the Lindell-Pinkas theses in practice

- Yang, Wright, Kardes, Ryger, Feigenbaum, 2004, 2005, 2006: Design and implementation of secure two-party Bayes-net structure discovery in arbitrarily partitioned data. Using ...

- (Increasing available computing power.)

- A circuit-generation library suitable for use with Fairplay.

- A development methodology and a coordination framework for modular multiparty protocols.

- Implementations of building-block modules ...
Toward the Lindell-Pinkas theses in practice

- Yang, Wright, Kardes, Ryger, Feigenbaum, 2004, 2005, 2006: Design and implementation of secure two-party Bayes-net structure discovery in arbitrarily partitioned data. Using ...

- (Increasing available computing power.)

- A circuit-generation library suitable for use with Fairplay.

- A development methodology and a coordination framework for modular multiparty protocols.

- Implementations of building-block modules ...
Toward the Lindell-Pinkas theses in practice

- Yang, Wright, Kardes, Ryger, Feigenbaum, 2004, 2005, 2006: Design and implementation of secure two-party **Bayes-net structure discovery** in arbitrarily partitioned data. Using ...

- (Increasing available computing power.)

- Malkhi, Nissan, Pinkas, Sella, 2004: the **Fairplay** system implementing the Yao 1986 generic scheme for secure two-party computation.

- A circuit-generation library suitable for use with Fairplay.

- A development methodology and a coordination framework for modular multiparty protocols.

- Implementations of building-block modules ...
Toward the Lindell-Pinkas theses in practice

- Yang, Wright, Kardes, Ryger, Feigenbaum, 2004, 2005, 2006: Design and implementation of secure two-party Bayes-net structure discovery in arbitrarily partitioned data. Using ...
- (Increasing available computing power.)
- A circuit-generation library suitable for use with Fairplay.
- A development methodology and a coordination framework for modular multiparty protocols.
- Implementations of building-block modules ...
Toward the Lindell-Pinkas theses in practice

- Yang, Wright, Kardes, Ryger, Feigenbaum, 2004, 2005, 2006: Design and implementation of secure two-party **Bayes-net structure discovery** in arbitrarily partitioned data. Using ...

- (Increasing available computing power.)

- Malkhi, Nissan, Pinkas, Sella, 2004: the **Fairplay** system implementing the Yao 1986 generic scheme for secure two-party computation.

- A circuit-generation library suitable for use with Fairplay.

- A development methodology and a coordination framework for modular multiparty protocols.

- Implementations of building-block modules ...
Using homomorphic encryption:

- Private bit vectors to private shares of their **scalar product**.
- Private shares of arguments to private shares of their **product**.
Building-block SMC modules

Using homomorphic encryption:
- Private bit vectors to private shares of their scalar product.
- Private shares of arguments to private shares of their product.

Using the Yao generic two-party SMC scheme:
- Sequences of private shares of a sequence of values to their (public) minindex, the (smallest) index of the minimum.
Using homomorphic encryption:

- Private bit vectors to private shares of their **scalar product**.
- Private shares of arguments to private shares of their **product**.

Using the Yao generic two-party SMC scheme:

- Sequences of private shares of a sequence of values to their (public) **minindex**, the (smallest) index of the minimum.

... And using both the Yao generic scheme and homomorphic encryption:

- Private shares of an argument to private shares of its **logarithm**, following the Lindell-Pinkas proposal—corrected, optimized, and implemented in the work presented here.
The Lindell-Pinkas $\ln x$ protocol: overall plan

- **Introduction**
- **The Lindell-Pinkas $\ln x$ protocol**
- **Overall plan**
- **Precision**
- **Phase 2 with scaling**
- **Reinterpreting**
- **The division problem**
- **Secure non-integer scaling of shared values**
- **Implementation and performance**
- **Conclusion**

Multiplicatively decompose x as $2^n(1 + \varepsilon)$, where $-1/4 \leq \varepsilon < 1/2$. Additively decompose the logarithm,

$$\ln x = \ln 2^n(1 + \varepsilon) = n \ln 2 + \ln(1 + \varepsilon) \quad (1)$$

The Taylor expansion of the latter term,

$$\ln(1 + \varepsilon) = \sum_{i=1}^{\infty} \frac{(-1)^{i-1} \varepsilon^i}{i} = \varepsilon - \frac{\varepsilon^2}{2} + \frac{\varepsilon^3}{3} - \frac{\varepsilon^4}{4} + \cdots \quad (2)$$

will allow **configurable accuracy**.

- **Protocol phase 1**: From shares of x, compute shares of n and ε using **generic Yao** two-party secure computation.

- **Protocol phase 2**: From the shares of ε yielded by phase 1, compute shares of $\ln(1 + \varepsilon)$—to “enough” terms of its expansion—using **oblivious polynomial evaluation**.
The Lindell-Pinkas \(\ln x \) protocol: overall plan

- Multiplicatively decompose \(x \) as \(2^n(1 + \varepsilon) \), where \(-1/4 \leq \varepsilon < 1/2\). Additively decompose the logarithm,

\[
\ln x = \ln 2^n(1 + \varepsilon) = n \ln 2 + \ln(1 + \varepsilon) \quad (1)
\]

The Taylor expansion of the latter term,

\[
\ln(1 + \varepsilon) = \sum_{i=1}^{\infty} \frac{(-1)^i-1}{i} \varepsilon^i = \varepsilon - \frac{\varepsilon^2}{2} + \frac{\varepsilon^3}{3} - \frac{\varepsilon^4}{4} + \cdots \quad (2)
\]

will allow configurable accuracy.

- Protocol phase 1: From shares of \(x \), compute shares of \(n \) and \(\varepsilon \) using generic Yao two-party secure computation.

- Protocol phase 2: From the shares of \(\varepsilon \) yielded by phase 1, compute shares of \(\ln(1 + \varepsilon) \)—to “enough” terms of its expansion—using oblivious polynomial evaluation.
The Lindell-Pinkas $\ln x$ protocol: overall plan

- Multiplicatively decompose x as $2^n(1 + \varepsilon)$, where $-1/4 \leq \varepsilon < 1/2$. Additively decompose the logarithm,

\[
\ln x = \ln 2^n(1 + \varepsilon) = n \ln 2 + \ln(1 + \varepsilon)
\]

(1)

The Taylor expansion of the latter term,

\[
\ln(1 + \varepsilon) = \sum_{i=1}^{\infty} \frac{(-1)^{i-1} \varepsilon^i}{i} = \varepsilon - \frac{\varepsilon^2}{2} + \frac{\varepsilon^3}{3} - \frac{\varepsilon^4}{4} + \cdots
\]

(2)

will allow configurable accuracy.

- Protocol phase 1: From shares of x, compute shares of n and ε using generic Yao two-party secure computation.

- Protocol phase 2: From the shares of ε yielded by phase 1, compute shares of $\ln(1 + \varepsilon)$—to “enough” terms of its expansion—using oblivious polynomial evaluation.
How many bits of precision?

☐ **Must** be decided in advance!

☐ Let N be the lowest agreed upper bound on n. ε may have as many as N bits of precision, which we want to preserve.

☐ We want similar precision in the output.

☐ Therefore, since we will be computing in integers, the polynomial we compute in phase 2 must be adjusted to accept ε scaled up by 2^N; and to deliver $\ln(1 + \varepsilon)$ scaled up by some factor σ that should be at least 2^N.

☐ ... But **scaling** of inputs/outputs of SMC modules if they are to be accepted/delivered as private shares is not as trivial as we are accustomed to thinking.
How many bits of precision?

- **Must** be decided in advance!

- Let N be the lowest agreed upper bound on n. ε may have as many as N bits of precision, which we want to preserve.

- We want similar precision in the output.

- Therefore, since we will be computing in integers, the polynomial we compute in phase 2 must be adjusted to accept ε scaled up by 2^N; and to deliver $\ln(1 + \varepsilon)$ scaled up by some factor σ that should be at least 2^N.

- ... But scaling of inputs/outputs of SMC modules if they are to be accepted/delivered as private shares is not as trivial as we are accustomed to thinking.
How many bits of precision?

- **Must** be decided in advance!

- Let N be the lowest agreed upper bound on n. ε may have as many as N bits of precision, which we want to preserve.

- We want similar precision in the output.

- Therefore, since we will be computing in integers, the polynomial we compute in phase 2 must be adjusted to accept ε scaled up by 2^N; and to deliver $\ln(1 + \varepsilon)$ scaled up by some factor σ that should be at least 2^N.

- ... But scaling of inputs/outputs of SMC modules if they are to be accepted/delivered as private shares is not as trivial as we are accustomed to thinking.
How many bits of precision?

- **Must** be decided in advance!
- Let N be the lowest agreed upper bound on n. ε may have as many as N bits of precision, which we want to preserve.
- We want similar precision in the output.
- Therefore, since we will be computing in integers, the polynomial we compute in phase 2 must be adjusted to accept ε scaled up by 2^N; and to deliver $\ln(1+\varepsilon)$ scaled up by some factor σ that should be at least 2^N.
- ... But scaling of inputs/outputs of SMC modules if they are to be accepted/delivered as private shares is not as trivial as we are accustomed to thinking.
How many bits of precision?

- **Must** be decided in advance!

- Let N be the lowest agreed upper bound on n. ε may have as many as N bits of precision, which we want to preserve.

- We want similar precision in the output.

- Therefore, since we will be computing in integers, the polynomial we compute in phase 2 must be adjusted to accept ε scaled up by 2^N; and to deliver $\ln(1 + \varepsilon)$ scaled up by some factor σ that should be at least 2^N.

- ... But **scaling** of inputs/outputs of SMC modules if they are to be accepted/delivered as private shares is not as trivial as we are accustomed to thinking.
Accommodating the scaling in phase 2

- Where α_1 and α_2 are the parties’ respective additive shares, in some finite field (or ring) \mathcal{F}, of $\varepsilon \cdot 2^N$ to be delivered by phase 1,

$$\varepsilon = (\alpha_1 + \mathcal{F} \alpha_2) / 2^N$$

- Scaling the phase 2 output up by factor σ, the Taylor series of (2) becomes

$$\sigma \ln(1 + \varepsilon) = \sum_{i=1}^{\infty} \frac{\sigma(-1)^{i-1}(\alpha_1 + \mathcal{F} \alpha_2)^i}{i \ 2^{Ni}}$$

- ... But we will need a finite polynomial over \mathcal{F} for the oblivious polynomial evaluation.
Accommodating the scaling in phase 2

Where \(\alpha_1 \) and \(\alpha_2 \) are the parties’ respective additive shares, in some finite field (or ring) \(\mathcal{F} \), of \(\varepsilon \cdot 2^N \) to be delivered by phase 1,

\[
\varepsilon = (\alpha_1 + \mathcal{F} \alpha_2) / 2^N
\]

Scaling the phase 2 output up by factor \(\sigma \), the Taylor series of (2) becomes

\[
\sigma \ln(1 + \varepsilon) = \sum_{i=1}^{\infty} \sigma(-1)^{i-1} (\alpha_1 + \mathcal{F} \alpha_2)^i / i 2^{Ni}
\]

... But we will need a finite polynomial over \(\mathcal{F} \) for the oblivious polynomial evaluation.
Accommodating the scaling in phase 2

Where α_1 and α_2 are the parties’ respective additive shares, in some finite field (or ring) \mathcal{F}, of $\varepsilon \cdot 2^N$ to be delivered by phase 1,

$$\varepsilon = (\alpha_1 + \mathcal{F} \alpha_2)/2^N$$

Scaling the phase 2 output up by factor σ, the Taylor series of (2) becomes

$$\sigma \ln(1 + \varepsilon) = \sum_{i=1}^{\infty} \frac{\sigma(-1)^{i-1}(\alpha_1 + \mathcal{F} \alpha_2)^i}{i \cdot 2^Ni}$$

... But we will need a finite polynomial over \mathcal{F} for the oblivious polynomial evaluation.
From Taylor series over \mathbb{R} to polynomial over \mathcal{F}

- Truncate the series at k terms for the desired accuracy.

- If the numerator will always be divisible by the denominator (in \mathbb{Z}); and ...

- if we use an \mathcal{F} large enough so that, where $m = |\mathcal{F}|$, all values in the recursive evaluation are always integers in the interval $[-\lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor]$; ...

- then we can reinterpret the additions and multiplications, and even the divisions, as the corresponding operations in \mathcal{F}, ...

- allowing us to replace α_2 with variable y, then open parentheses and collect terms to arrive at a polynomial over \mathcal{F} for oblivious polynomial evaluation.
From Taylor series over \(\mathbb{R} \) to polynomial over \(\mathcal{F} \)

- □ Truncate the series at \(k \) terms for the desired accuracy.
- □ If the numerator will always be divisible by the denominator (in \(\mathbb{Z} \)); and ...

 □ if we use an \(\mathcal{F} \) large enough so that, where \(m = |\mathcal{F}| \), all values in the recursive evaluation are always integers in the interval \([-\left\lfloor \frac{m}{2} \right\rfloor, \left\lfloor \frac{m}{2} \right\rfloor]\); ...

 □ then we can reinterpret the additions and multiplications, and even the divisions, as the corresponding operations in \(\mathcal{F} \), ...

□ allowing us to replace ‘\(\alpha_2 \)’ with variable ‘\(y \)’, then open parentheses and collect terms to arrive at a polynomial over \(\mathcal{F} \) for oblivious polynomial evaluation.
From Taylor series over \(\mathbb{R} \) to polynomial over \(\mathcal{F} \)

- Truncate the series at \(k \) terms for the desired accuracy.

- If the numerator will always be divisible by the denominator (in \(\mathbb{Z} \)); and ...

- if we use an \(\mathcal{F} \) large enough so that, where \(m = |\mathcal{F}| \), all values in the recursive evaluation are always integers in the interval \([-\lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor] \); ...

- then we can reinterpret the additions and multiplications, and even the divisions, as the corresponding operations in \(\mathcal{F} \), ...

- allowing us to replace ‘\(\alpha_2 \)’ with variable ‘\(y \)’, then open parentheses and collect terms to arrive at a polynomial over \(\mathcal{F} \) for oblivious polynomial evaluation.
From Taylor series over \mathbb{R} to polynomial over \mathcal{F}

- Truncate the series at k terms for the desired accuracy.
- If the numerator will always be divisible by the denominator (in \mathbb{Z}); and ...
- if we use an \mathcal{F} large enough so that, where $m = |\mathcal{F}|$, all values in the recursive evaluation are always integers in the interval $[-\lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor]$; ...
- then we can reinterpret the additions and multiplications, and even the divisions, as the corresponding operations in \mathcal{F}, ...
- allowing us to replace ‘α_2’ with variable ‘y’, then open parentheses and collect terms to arrive at a polynomial over \mathcal{F} for oblivious polynomial evaluation.
From Taylor series over \mathbb{R} to polynomial over \mathcal{F}

- Truncate the series at k terms for the desired accuracy.
- If the numerator will always be divisible by the denominator (in \mathbb{Z}); and ...
- If we use an \mathcal{F} large enough so that, where $m = |\mathcal{F}|$, all values in the recursive evaluation are always integers in the interval $[-\lfloor \frac{m}{2} \rfloor, \lfloor \frac{m}{2} \rfloor]$; ...
- Then we can reinterpret the additions and multiplications, and even the divisions, as the corresponding operations in \mathcal{F}, ...
- Allowing us to replace α_2 with variable y, then open parentheses and collect terms to arrive at a polynomial over \mathcal{F} for oblivious polynomial evaluation.
Lindell and Pinkas set the scale-up factor σ at $2^N \text{lcm}(2, \ldots, k)$, giving the truncated Taylor series

$$\ln(1 + \varepsilon) \cdot 2^N \text{lcm}(2, \ldots, k) \approx \sum_{i=1}^{k} \frac{(-1)^{i-1} \left(\text{lcm}(2, \ldots, k)/i\right) \left(\alpha_1 + \mathcal{F} \alpha_2\right)^i}{2^N(i-1)}$$

In the numerator,

$$(\alpha_1 + \mathcal{F} \alpha_2)^i = (\varepsilon \cdot 2^N)^i = \varepsilon^i \cdot 2^{Ni}$$

Yet this is not generally divisible by $2^{N(i-1)}$.
Setting the scale-up: the original Lindell-Pinkas version

Lindell and Pinkas set the scale-up factor σ at $2^N \text{lcm}(2, \ldots, k)$, giving the truncated Taylor series

$$\ln(1 + \varepsilon) \cdot 2^N \text{lcm}(2, \ldots, k) \approx \sum_{i=1}^{k} \frac{(-1)^{i-1} \left(\text{lcm}(2, \ldots, k)/i\right) (\alpha_1 + \mathcal{F} \alpha_2)^i}{2^N(i-1)}$$

In the numerator,

$$(\alpha_1 + \mathcal{F} \alpha_2)^i = (\varepsilon \cdot 2^N)^i = \varepsilon^i \cdot 2^{Ni}$$

Yet this is not generally divisible by $2^N(i-1)$.
Lindell and Pinkas set the scale-up factor σ at $2^N \operatorname{lcm}(2, \ldots, k)$, giving the truncated Taylor series

$$\ln(1 + \varepsilon) \cdot 2^N \operatorname{lcm}(2, \ldots, k) \approx \sum_{i=1}^{k} \frac{(-1)^{i-1} \left(\operatorname{lcm}(2, \ldots, k)/i\right) \left(\alpha_1 + \varepsilon \alpha_2\right)^i}{2^N(i-1)}$$

In the numerator,

$$(\alpha_1 + \varepsilon \alpha_2)^i = (\varepsilon \cdot 2^N)^i = \varepsilon^i \cdot 2^{Ni}$$

Yet this is not generally divisible by $2^{N(i-1)}$.
Brute-force scale-up is not too expensive!

- Brute-force solution: We set \(\sigma \) at \(2^{Nk} \text{lcm}(2, \ldots, k) \), giving the truncated Taylor series

\[
\ln(1 + \varepsilon) \cdot 2^{Nk} \text{lcm}(2, \ldots, k) \approx \sum_{i=1}^{k} (-1)^{i-1} 2^{N(k-i)} \frac{\text{lcm}(2, \ldots, k)}{i} \left(\alpha_1 + F \alpha_2 \right)^i
\]

- Surprisingly, this does not require that \(F \) be significantly larger!

- But are other modules in the invoking modular protocol now saddled with the expense of the larger scaling factor?
Brute-force scale-up is not too expensive!

- Brute-force solution: We set σ at $2^{Nk} \text{lcm}(2, \ldots, k)$, giving the truncated Taylor series

$$\ln(1 + \varepsilon) \cdot 2^{Nk} \text{lcm}(2, \ldots, k) \approx \sum_{i=1}^{k} (-1)^{i-1} 2^{N(k-i)} \left(\text{lcm}(2, \ldots, k)/i\right) \left(\alpha_1 + \mathcal{F} \alpha_2\right)^i$$

- Surprisingly, this does not require that \mathcal{F} be significantly larger!

- But are other modules in the invoking modular protocol now saddled with the expense of the larger scaling factor?
Brute-force scale-up is not too expensive!

- Brute-force solution: We set σ at $2^{Nk}\text{lcm}(2, \ldots, k)$, giving the truncated Taylor series

$$\ln(1 + \varepsilon) \cdot 2^{Nk} \text{lcm}(2, \ldots, k) \approx \sum_{i=1}^{k} (-1)^{i-1} 2^{N(k-i)} \left(\frac{\text{lcm}(2, \ldots, k)}{i}\right) \left(\alpha_1 + \mathcal{F} \alpha_2\right)^i$$

- Surprisingly, this does not require that \mathcal{F} be significantly larger!

- But are other modules in the invoking modular protocol now saddled with the expense of the larger scaling factor?
Arbitrary scaling: naive Yao recourse

- Scaling up by an **integer** factor: autonomously by the parties, no problem.

- Scaling down by an integer factor, or, more generally, scaling by a **non-integer** factor: requires an SMC episode.

- Autonomous scaling by a non-integer factor is not possible—even to integer approximation! **Approximate division does not distribute over modular addition.**

- A Yao SMC episode can accomplish arbitrary scaling, but division and table look-ups are expensive.
Arbitrary scaling: naive Yao recourse

- Scaling **up** by an integer factor: autonomously by the parties, no problem.

- Scaling **down** by an integer factor, or, more generally, scaling by a **non-integer** factor: requires an SMC episode.

- Autonomous scaling by a non-integer factor is not possible—even to integer approximation! Approximate division does not distribute over modular addition.

- A Yao SMC episode can accomplish arbitrary scaling, but division and table look-ups are expensive.
Arbitrary scaling: naive Yao recourse

- Scaling **up** by an **integer** factor: autonomously by the parties, no problem.

- Scaling **down** by an integer factor, or, more generally, scaling by a **non-integer** factor: requires an SMC episode.

- Autonomous scaling by a non-integer factor is not possible—even to integer approximation! **Approximate division does not distribute over modular addition.**

- A Yao SMC episode can accomplish arbitrary scaling, but division and table look-ups are expensive.
Arbitrary scaling: naive Yao recourse

- Scaling **up** by an **integer** factor: autonomously by the parties, no problem.

- Scaling **down** by an integer factor, or, more generally, scaling by a **non-integer** factor: requires an SMC episode.

- Autonomous scaling by a non-integer factor is not possible—even to integer approximation! **Approximate division does not distribute over modular addition.**

- A Yao SMC episode can accomplish arbitrary scaling, but division and table look-ups are expensive.
Arbitrary scaling: optimized Yao recourse

- Integer part of scale-up factor σ handled separately, leaving a scale-down to compute and add modularly.

- For p parties, only p variants of excess in the simple distribution of the scale-down over p original shares.

- A Yao circuit can
 - accept the parties’ original shares;
 - accept the parties’ simple-minded autonomous scale-downs;
 - accept a random value from parties 1 through $p - 1$;
 - determine from the non-modular sum of the original shares which correction to apply to the autonomous scale-downs, and share the corrected scale-down using the random values.
Arbitrary scaling: optimized Yao recourse

- Integer part of scale-up factor σ handled separately, leaving a scale-down to compute and add modularly.

- For p parties, only p variants of excess in the simple distribution of the scale-down over p original shares.

- A Yao circuit can
 - accept the parties’ original shares;
 - accept the parties’ simple-minded autonomous scale-downs;
 - accept a random value from parties 1 through $p - 1$;
 - determine from the non-modular sum of the original shares which correction to apply to the autonomous scale-downs, and share the corrected scale-down using the random values.
Arbitrary scaling: optimized Yao recourse

- Integer part of scale-up factor σ handled separately, leaving a scale-down to compute and add modularly.

- For p parties, only p variants of excess in the simple distribution of the scale-down over p original shares.

- A Yao circuit can
 - accept the parties’ original shares;
 - accept the parties’ simple-minded autonomous scale-downs;
 - accept a random value from parties 1 through $p - 1$;
 - determine from the non-modular sum of the original shares which correction to apply to the autonomous scale-downs, and share the corrected scale-down using the random values.
<table>
<thead>
<tr>
<th>Introduction</th>
<th>The Lindell-Pinkas (\ln x) protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>The division problem</td>
<td></td>
</tr>
<tr>
<td>Secure non-integer scaling of shared values</td>
<td></td>
</tr>
<tr>
<td>Naive Yao scaling</td>
<td></td>
</tr>
<tr>
<td>Optimized scaling</td>
<td></td>
</tr>
<tr>
<td>▶ Imperfect secrecy</td>
<td></td>
</tr>
<tr>
<td>Benefits for (\log)</td>
<td></td>
</tr>
<tr>
<td>Implementation and performance</td>
<td></td>
</tr>
<tr>
<td>Conclusion</td>
<td></td>
</tr>
</tbody>
</table>

- It is possible to trade off the perfection of the perfect secrecy in the sharing for the possibility of autonomous scaling after all—no additional SMC needed!

- Theoretically challenging.

- Eminently practical.
Arbitrary scaling: imperfect secrecy

- It is possible to trade off the perfection of the perfect secrecy in the sharing for the possibility of autonomous scaling after all—no additional SMC needed!

- Theoretically challenging.

- Eminently practical.
Arbitrary scaling: imperfect secrecy

- It is possible to trade off the perfection of the perfect secrecy in the sharing for the possibility of autonomous scaling after all—no additional SMC needed!

- Theoretically challenging.

- Eminently practical.
Benefits for the Lindell-Pinkas logarithm protocol

 Compatibility:
We can efficiently reverse unwanted scale-ups that have entered as technical artifacts.

 Performance:
We can efficiently achieve wanted scale-ups, and so avoid the table look-up recommended by Lindell and Pinkas to convert \(n \) to \(2^N \cdot n \ln 2 \) within the Yao computation of phase 1.
Benefits for the Lindell-Pinkas logarithm protocol

- **Compatibility:** We can efficiently **reverse unwanted scale-ups** that have entered as technical artifacts.

- **Performance:** We can efficiently **achieve wanted scale-ups**, and so avoid the **table look-up** recommended by Lindell and Pinkas to convert n to $2^N \cdot n \ln 2$ **within the Yao computation** of phase 1.
Implementation

- Yao-circuit generator in Perl.
Yao-circuit generator in Perl.
Fairplay Yao-circuit runner in Java.
Implementation

- Yao-circuit generator in Perl.
- Fairplay Yao-circuit runner in Java.
- Controlling program, invoking Fairplay for phase 1 and implementing the oblivious polynomial evaluation of phase 2, in C.
Implementation

- Yao-circuit generator in Perl.
- Fairplay Yao-circuit runner in Java.
- Controlling program, invoking Fairplay for phase 1 and implementing the oblivious polynomial evaluation of phase 2, in C.
- Bignums and basic cryptographic math from libssl and libcrypto.
Box: Both parties running as processes on this laptop.
Performance

- Both parties running as processes on this laptop.
- Intel Pentium M at 1.86 GHz.

<table>
<thead>
<tr>
<th>N</th>
<th>k</th>
<th>modulus bits</th>
<th>gates</th>
<th>absolute error</th>
<th>time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>4</td>
<td>60</td>
<td>1386</td>
<td>< 0.00458</td>
<td>3.57</td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>120</td>
<td>2797</td>
<td>< 0.00183</td>
<td>6.16</td>
</tr>
<tr>
<td>28</td>
<td>7</td>
<td>210</td>
<td>4732</td>
<td>< 0.00034</td>
<td>10.04</td>
</tr>
</tbody>
</table>
The Lindell-Pinkas two-party secure logarithm protocol, as it has evolved in the course of our implementation, seems to work well and be quite usable as a module in a complex two-party SMC data-mining protocol.

SMC usability and performance enhancements will continue.

... But SMC can already do much now. The main impediment to real-world application is a **gap in awareness and understanding** of what can already be done with SMC today, a gap that is just beginning to be addressed.