Three Proofs of a Simple Lemma

We give three proofs of a claim from the textbook:

Claim 2.5.2.1: There exists a set $S_n \subseteq \{0, 1\}^n$ of cardinality at least $\frac{\varepsilon(n)}{2} \cdot 2^n$ such that for every $x \in S_n$, it holds that

$$s(x) \overset{\text{df}}{=} \Pr[G(f(x), R_n) = b(x, R_n)] \geq \frac{1}{2} + \frac{\varepsilon(n)}{2}$$

This claim is stated in a rather awkward way. Instead of existentially quantifying S_n, it is simpler to just define it in terms of $s(\cdot)$, namely,

Definition:

$$S_n = \left\{ x \in \{0, 1\}^n \mid s(x) \geq \frac{1}{2} + \frac{\varepsilon(n)}{2} \right\}.$$

Then the claim we are trying to prove follows from the slightly stronger

Lemma 1

$$|S_n| \geq \varepsilon(n) \cdot 2^n.$$

We will need one further fact about $s(\cdot)$.

Fact

$$E(s(X_n)) = \frac{1}{2} + \varepsilon(n).$$

This follows immediately from the definition of $\varepsilon(n)$ given in the book.

We give three proofs of the lemma—one algebraic, one geometric, and one using Markov’s inequality.

1 **Algebraic proof**

The algebraic proof relies on the definition of expectation, namely, that

$$E(s(X_n)) = \sum_x \Pr[X_n = x] \cdot s(x) = 2^{-n} \sum_x s(x).$$

The key idea is to split the sum into two parts, those terms where $x \in S_n$ and those terms where $x \not\in S_n$. Towards this end, define $S_n^c = \{0, 1\}^n - S_n$. We then have

$$\frac{1}{2} + \varepsilon(n) = E(s(X_n)) = 2^{-n} \sum_x s(x)$$

$$= 2^{-n} \left(\sum_{x \in S_n} s(x) + \sum_{x \in S_n^c} s(x) \right)$$
\[\leq 2^{-n} \left(|S_n| + \sum_{x \in S_n} \left(\frac{1}{2} + \frac{\varepsilon(n)}{2} \right) \right) \]
\[= 2^{-n} \left(|S_n| + |S_n| \left(\frac{1}{2} + \frac{\varepsilon(n)}{2} \right) \right) \]
\[= 2^{-n} \left(|S_n| + (2^n - |S_n|) \left(\frac{1}{2} + \frac{\varepsilon(n)}{2} \right) \right) \]
\[= \frac{1}{2} + \frac{\varepsilon(n)}{2} + 2^{-n} \left(|S_n| - |S_n| \left(\frac{1}{2} + \frac{\varepsilon(n)}{2} \right) \right) \]
\[\leq \frac{1}{2} + \frac{\varepsilon(n)}{2} + 2^{-n} \left(\frac{1}{2} |S_n| \right). \]

Subtracting $1/2 + \varepsilon(n)/2$ from both sides, we have
\[\frac{\varepsilon(n)}{2} \leq \frac{1}{2} \cdot \frac{|S_n|}{2^n} \]
from which it follows that
\[|S_n| \geq \varepsilon(n) \cdot 2^n \]
as desired.

2 Geometric proof

Figure 1: Graph of the function $s(x)$.

The geometric proof is based on an analysis of the graph of the function $s(x)$. Assume that the domain of $s(\cdot)$ has been ordered so as to make $s(\cdot)$ non-decreasing. Then the graph of $s(\cdot)$ looks
like the diagram of Figure 1. I have drawn a solid horizontal line at \(y = 1/2 + \varepsilon(n) = E(s(X_n)) \). This is the average value of \(s(\cdot) \) over its domain. Hence, the area above the curve and below this line (regions \(A \) and \(B \) in the diagram) is the same as the area above the line and below the curve (region \(C \) in the diagram).

I have drawn a second horizontal line at \(y = 1/2 + \varepsilon(n)/2 \). This is the defining threshold for the set \(S_n \). I have drawn a vertical dashed line through the point where it intersects the curve. Values of \(x \) to the right of this line are in \(S_n \), and those to the left are not. The goal is to prove that the line cannot be too far to the right (so that \(S_n \) isn’t too small).

The proof is now fairly straightforward. First of all, as noted before, we have \(A + B = C \).

Clearly, region \(A \) includes the skinny rectangle between the two horizontal lines. It has height \(\varepsilon(n)/2 \) and width \(2^n - |S_n| \). Hence,

\[
A \geq \frac{\varepsilon(n)}{2} (2^n - |S_n|).
\]

Region \(C \) is entirely contained within the upper right hand rectangle of height \(1/2 - \varepsilon(n) \) and width \(|S_n| \). Hence,

\[
C \leq \left(\frac{1}{2} - \varepsilon(n) \right) \cdot |S_n|.
\]

Combining these facts, we have

\[
\left(\frac{1}{2} - \varepsilon(n) \right) \cdot |S_n| \geq C = A + B \geq A \geq \frac{\varepsilon(n)}{2} (2^n - |S_n|)
\]

Therefore,

\[
\left(\frac{1}{2} - \varepsilon(n) \right) \cdot |S_n| \geq \frac{\varepsilon(n)}{2} \cdot 2^n.
\]

Solving for \(|S_n| \), we get

\[
|S_n| \geq \frac{\varepsilon(n) \cdot 2^n}{2 \left(\frac{1}{2} - \varepsilon(n) \right)} \geq \varepsilon(n) \cdot 2^n.
\]

3 A proof using Markov’s inequality

Recall Markov’s inequality:

\[
\Pr[X \geq v] \leq \frac{E(X)}{v}.
\]

The proof using Markov’s inequality applies the inequality to the random variable \(1 - s(X_n) \) to obtain

\[
\Pr \left[1 - s(X_n) \geq \frac{1}{2} - \frac{\varepsilon(n)}{2} \right] \leq \frac{E(1 - s(X_n))}{\frac{1}{2} - \frac{\varepsilon(n)}{2}}.
\]

It uses the fact that

\[
\Pr \left[s(X_n) \geq \frac{1}{2} + \frac{\varepsilon(n)}{2} \right] = \Pr[X_n \in S_n] = \frac{|S_n|}{2^n}.
\]
Hence, to prove our lemma, we establish a lower bound on this quantity.

The calculation is an exercise in change of signs and negation of events.

\[
\Pr \left[s(X_n) \geq \frac{1}{2} + \frac{\varepsilon(n)}{2} \right] = 1 - \Pr \left[s(X_n) < \frac{1}{2} + \frac{\varepsilon(n)}{2} \right] \\
= 1 - \Pr \left[1 - s(X_n) > \frac{1}{2} - \frac{\varepsilon(n)}{2} \right].
\]

We apply Markov’s inequality to get

\[
1 - \Pr \left[1 - s(X_n) > \frac{1}{2} - \frac{\varepsilon(n)}{2} \right] \geq 1 - \frac{E(1 - s(X_n))}{\frac{1}{2} - \frac{\varepsilon(n)}{2}} \\
= 1 - \frac{1 - \left(\frac{1}{2} + \varepsilon(n) \right)}{\frac{1}{2} - \frac{\varepsilon(n)}{2}} \\
= \frac{\varepsilon(n)}{1 - \varepsilon(n)} \\
\geq \varepsilon(n).
\]

Thus,

\[
\frac{|S_n|}{2^n} \geq \varepsilon(n)
\]

and the lemma follows.