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Problem Set 2

Due in class on Thursday, February 26, 2009.

Problem 1 One-way functions and collections of one-way functions

[Textbook, Chapter 2, Exercise 18.]

Problem 2 Hard core of one-way function

[Textbook, Chapter 2, Exercise 24, as modified below.]
Note that the “Guideline” is poorly printed and easy to misinterpret. The second subscript “xĪ”

on the right side of the definition of g is Ī , not I , but it takes sharp eyes to spot the difference in the
printed version of the book. Here, Ī is intended to denote the set difference {1, 2, . . . , |x|} − I .

Also, we are used to dealing with functions on strings, yet the guideline defines g to take a set
argument. There are many ways of representing finite sets by strings. For this problem, represent
the set I ⊆ {1, 2, . . . , |x|} by the length-|x| bit-vector u, where ui = 1 iff i ∈ I . It follows that Ī is
represented by ¬u, the bitwise complement of u.

Finally, we define x[u] = xi1 . . . xik , where ij is the position of the jth 1-bit in u, and k is the
number of 1-bits in u. Thus, if u represents the set S, then x[u] denotes the string xS defined in the
guideline.

Using these conventions, the intended function g is defined by

g(x, u) = (f(x[u]), x[¬u], u).

You may ignore the part of the guideline that talks about more “dramatic” predictability.

Problem 3 Amplification

Amplification is the technique for reducing errors in probabilistic algorithms by repeating the com-
putation many times. We have used amplification both for reducing the error probability in algo-
rithms attempting to invert one-way functions and also for increasing the advantage of algorithms
attempting to guess hard core predicates. However, the way it is used differs markedly in the two
cases.

For inverting functions, we assume an algorithm A(y) succeeds with probability at least ε(n) at
returning a value x ∈ f−1(y). To amplify, we repeat A(y) for r(n) times and succeed if any of the
runs succeed. This depends on our ability to feasibly test whether the value returned by A(y) in a
given run is correct or not. Hence, the amplified success probability is at least 1− (1− ε(n))r(n).

For guessing the value of a hard core predicate, we assume an algorithm D(y) with advantage
ε(n) at predicting b(x). To amplify, we repeat D(y) for r(n) times. Because we do knot know
which runs of D(y) return correct answers, we select our final answer to be the majority of all
returned answers. The advantage of the resulting algorithm D′ is not easy to compute directly, so
we use the Chernoff bound or other statistical techniques to get a lower bound on it.
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Questions: Suppose ε(n) = 1
nlog2 n = 1

2(log2 n)2
.

(a) Show that for all positive polynomials p(·) and all sufficiently large n that ε(n) < 1
p(n) .

(b) Suppose ε(n) is the success probability for algorithmA. Find as small a function r(n) as you
can such that repeating A for r(n) times results in a success probability greater than 1/2 for
all sufficiently large n.

(c) Suppose ε(n) is the advantage of algorithm D. Find as small a function r(n) as you can such
that repeating D for r(n) times and taking the majority gives an advantage greater than 1/4
for all sufficiently large n.
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