
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 461b: Foundations of Cryptography Handout #6
Yitong Yin March 1, 2009

Solutions to Problem Set 2
Originally due Thursday, February 26, 2009.

Problem 1 One-way functions and collections of one-way functions

[Textbook, Chapter 2, Exercise 18.]

Solution

(a) The sampling algorithm (I,D) on input 1n can be seen as a function mapping q(n) bits (the
internal coin tosses) to a pair (i, x), where q(n) is polynomial of n (number of internal coin
tosses), i ∈ Ī ∩ {0, 1}n and x ∈ Di. Denoting this function as Sn, it is easy to see that

Sn(Uq(n)) = (In, Xn)

where In is the output distribution of algorithm I on input 1n, and Xn is the output of algo-
rithm D on input In.

A new function g can be defined as such: for each z ∈ {0, 1}q(n), represent that Sn(z) =
(i, x), thus g(z) = (i, fi(x)). It also follows that g(Uq(n)) = (In, fIn(Xn)).

We will show that the above g is a one-way function.

Function g is polynomial-time computable since Sn can be computed by the polynomial-time
algorithms I and D and fi can be computed by the polynomial-time algorithm F .

Suppose that g is polynomial-time invertable, namely, there exists a polynomial-time algo-
rithms A such that for some polynomial p(n),

Pr[A(1q(n), g(Uq(n))) ∈ g−1(g(Uq(n)))] ≥
1

p(n)
.

Define a new algorithm B as such: for each input y = (i, fi(x)) where i ∈ Ī ∩ {0, 1}n and
x ∈ Di, represent that Sn(A(1q(n), y)) = (j, z), where j ∈ {0, 1}n and such that B(y) = z.
We show that B inverts the collection (I,D, F).

Since g(Uq(n)) = (In, fIn(Xn)), the event thatA(1q(n), g(Uq(n))) ∈ g−1(g(Uq(n))) is equiv-
alent to the event that A(1q(n), (In, fIn(Xn))) ∈ g−1(In, fIn(Xn)), which according to the
definition of B, holds only if B(In, fIn(Xn)) ∈ f−1(fIn(Xn)). Therefore,

Pr[B(In, fIn(Xn))]
≥ Pr[A(1q(n), g(Uq(n))) ∈ g−1(g(Uq(n)))]

≥ 1
p(n)

,

which is contra to the assumption that (I,D, F) is a one-way collection.

(b) Given a one-way function f , a one-way collection (I,D, F) can be defined as such: I(1n)
always outputs 0n, D(0n) samples uniformly over the domain of f , and F (0n, x) = f(x).

2 Solutions to Problem Set 2

Problem 2 Hard core of one-way function

[Textbook, Chapter 2, Exercise 24, as modified below.]
Note that the “Guideline” is poorly printed and easy to misinterpret. The second subscript “xĪ”

on the right side of the definition of g is Ī , not I , but it takes sharp eyes to spot the difference in the
printed version of the book. Here, Ī is intended to denote the set difference {1, 2, . . . , |x|} − I .

Also, we are used to dealing with functions on strings, yet the guideline defines g to take a set
argument. There are many ways of representing finite sets by strings. For this problem, represent
the set I ⊆ {1, 2, . . . , |x|} by the length-|x| bit-vector u, where ui = 1 iff i ∈ I . It follows that Ī is
represented by ¬u, the bitwise complement of u.

Finally, we define x[u] = xi1 . . . xik , where ij is the position of the jth 1-bit in u, and k is the
number of 1-bits in u. Thus, if u represents the set S, then x[u] denotes the string xS defined in the
guideline.

Using these conventions, the intended function g is defined by

g(x, u) = (f(x[u]), x[¬u], u).

You may ignore the part of the guideline that talks about more “dramatic” predictability.

Solution

We take the function g(x, u) = (f(x[u]), x[¬u], u) defined in the problem guideline. For each input
(x, u), let bi(x, u) denote the ith bit of the input.

Let Ai be such an algorithm: for each input in the form of (f(x[u]), x[¬u], u) if i > |u| (size of
the set u), return the (i− |u|)th bit of the binary representation of u; if i ≤ |u| and i /∈ u, return xi
which is contained in x[¬u]; and if otherwise, flip a fair coin and return the outcome.

It is easy to see that it always holds thatAi(g(x, u)) = bi(x, u) for i > |u|, i.e. Pr[Ai(g(Un)) =
bi(x, u)] = 1 for i > |u|.

For i ≤ |u|, Ai(g(x, u)) = bi(x, u) when i /∈ u, or if i ∈ u and Ai makes a correct guess.
According to the total probability, for i ≤ |u|,

Pr[Ai(g(Un)) = bi(x, u)]
= Pr[the outcome of coin flipping is 1] Pr[ui = 1] + 1 · Pr[ui = 0]

=
1
2

Pr[ui = 1] + Pr[ui = 0]

where u is a uniform random string of length |x|, thus Pr[ui = 1] = Pr[ui = 0] = 1
2 . The above

probability is 3/4.

Problem 3 Amplification

Amplification is the technique for reducing errors in probabilistic algorithms by repeating the com-
putation many times. We have used amplification both for reducing the error probability in algo-
rithms attempting to invert one-way functions and also for increasing the advantage of algorithms
attempting to guess hard core predicates. However, the way it is used differs markedly in the two
cases.

For inverting functions, we assume an algorithm A(y) succeeds with probability at least ε(n) at
returning a value x ∈ f−1(y). To amplify, we repeat A(y) for r(n) times and succeed if any of the
runs succeed. This depends on our ability to feasibly test whether the value returned by A(y) in a
given run is correct or not. Hence, the amplified success probability is at least 1− (1− ε(n))r(n).

Handout #6—March 1, 2009 3

For guessing the value of a hard core predicate, we assume an algorithm D(y) with advantage
ε(n) at predicting b(x). To amplify, we repeat D(y) for r(n) times. Because we do knot know
which runs of D(y) return correct answers, we select our final answer to be the majority of all
returned answers. The advantage of the resulting algorithm D′ is not easy to compute directly, so
we use the Chernoff bound or other statistical techniques to get a lower bound on it.

Questions: Suppose ε(n) = 1
nlog2 n = 1

2(log2 n)2
.

(a) Show that for all positive polynomials p(·) and all sufficiently large n that ε(n) < 1
p(n) .

(b) Suppose ε(n) is the success probability for algorithmA. Find as small a function r(n) as you
can such that repeating A for r(n) times results in a success probability greater than 1/2 for
all sufficiently large n.

(c) Suppose ε(n) is the advantage of algorithm D. Find as small a function r(n) as you can such
that repeating D for r(n) times and taking the majority gives an advantage greater than 1/4
for all sufficiently large n.

Solution

(a) Let LHS(n) = − log2 ε(n) = (log2 n)2, and RHS(n) = − log2 p(n). Since p(·) is a
polynomial, RHS(n) ≥ C log2 n for some constant C which is independent of n.

For all n > 2C , it holds that log2 n > C, thus RHS(n) = (log2 n)2 < C log2 n ≤
RHS(n). Since − log2(·) is monotonically decreasing, it must holds all the above n that
ε(n) = 2−LHS(n) < 2−RHS(n) = 1

p(n) .

(b) Since the runnings of algorithm are independent, the probability that all r = r(n) trails fail
is (1− ε)r. We want this probability to be less than 1/2.

(1− ε)r =
(

1− 1
nlog2 n

)r
=

(
1− 1

nlog2 n

)nlog2 n· r

nlog2 n

≥ exp
(
− r

nlog2 n

)
.

To have (1 − ε)r < 1/2, it requires that exp
(
− r
nlog2 n

)
< 1/2. Solving this inequality we

have that r(n) > nlog2 n · ln 2.

(c) Let Xi be the random variable which indicates ith trial of D succeeds, it holds that Xi = 1
with probability 1

2 + ε and Xi = 0 with probability 1
2 − ε. The probability that the majority

fails is

Pr

[
1
r

r∑
i=1

≤ 1
2

]

= Pr

[
1
r

r∑
i=1

−
(

1
2

+ ε

)
≤ −ε

]

4 Solutions to Problem Set 2

≤ Pr

[∣∣∣∣∣1r
r∑
i=1

−
(

1
2

+ ε

)∣∣∣∣∣ ≥ ε
]

≤ 2 exp

(
−ε2r(

1
2 − 2ε2

)) (due to Chernoff bound)

= q.

The advantage is 1/4, thus the probability that bad thing happens is less than 1/2−1/4 = 1/4
i.e. q < 1/4. To make q < 1

4 , it requires that r(n) > (1
2ε(n)2

− 2) ln 8 = (1
2n

2 log2 n− 2) ln 8.

	One-way functions and collections of one-way functions
	Hard core of one-way function
	Amplification

