YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 461b: Foundations of Cryptography Notes 2 (rev. 1)
Professor M. J. Fischer January 15, 2009

Lecture Notes 2

4 Turing Machine Descriptions and Simulations

4.1 Universal Turing machines

Each Turing machine has a finite description. A usual treatment of Turing machines develops a de-
scription language for Turing machines whereby a machine M is uniquely described by a string e ;.
There is nothing particularly remarkable about Turing machine programs compared to C programs
or any other familiar programming language. The important property is that given a Turing machine
program e, you can “run” the program and see what it does on a particular input string.

More precisely, there is a Turing machine U, called a universal machine, such that for every
Turing machine M, if ejs describes M, then U (epy,) and M (z) are the same, meaning that either
both halt and give the same outputs, or neither halts. Moreover, there is a fixed polynomial function
p(t, e, z) such that Timey (eps,) < p(Timeys(x), epr, x). Thus, not only can U simulate any other
Turing machine, but there is at most a polynomial time slowdown in the simulation. Hence, if M (x)
runs in polynomial time, then so does U (epy, x).

4.2 What can we do with a program?

A natural question is, “What we can tell from looking at a program?” The short answer is “nothing”
except for what can be learned by simulating it step by step. The famous theorem about the unsolv-
ability of the halting problem says that there is no algorithm (Turing machine) H (e,,) that always
halts and correctly outputs 1 if M (ej) halts and 0 if M (eps) does not halt. Thus, one cannot look
at a program and in a finite amount of time say for sure whether or not that program will halt when
given its own description as input.

Many other surprising results are known as well. For example, given a program ej;, you can’t
even find another program ep;s that is guaranteed to differ from e;;. No matter how you try to
modify the code of ej;, you might just end up with an equivalent program.

On the positive side, there exists a Turing machine M such that M(_,) = ey, that is, M when
run on a blank tape, writes its own description on the tape and then halts. This is true for any
reasonable programming language and does not depend on special features of the language — only
that it is adequately powerful to describe any algorithm.

As a fun exercise, you can try to write a C program self.c, such that, when compiled and
run, the text written to standard output is identical to the contents self.c. Of course, you could
write a program that opened self.c and copied it to standard output, but the program I have in
mind doesn’t cheat and will work correctly even if the source file is deleted before the executable is
run.

5 A Hard Problem

Our interest in Turing machines and time complexity is to allow us to distinguish “feasible” from
“infeasible” computations. We have already said that we regard anything computable in polynomial

2 CPSC 461b Lecture Notes 2 (rev. 1)

time as being feasible to compute, so the membership problem for all languages in P is feasible.
On the other hand, we need problems that are infeasible for cryptography. For example, we want it
to be infeasible for an adversary to recover the plaintext of a message from its ciphertext.

We now show that hard problems really do exist. We do this by diagonalization. We’ll be-
gin with a construction that almost works and then show how to fix it to give us the function of
theorem [11

Theorem 1 There exists a function f(x) that can be computed in time O(c") for some constant c.
Moreover, every Turing machine M that computes f runs for more than 2™ steps for infinitely many
inputs .

The following is an immediate corollary since p(n) < 2" for every polynomial p(n) and all suffi-
ciently large n.

Corollary 2 The function f(x) of theorem|l|cannot be computed in polynomial time.

We begin our construction by defining a function g(z) as follows: Given an input string z,
determine whether or not x is a syntactically valid description of some Turing machine M. If not,
halt and output g(z) = 0. Otherwise, use the universal machine U to simulate 2/*! steps of M (z).
Suppose M halts on x within that many steps and produces output string y. If y = 0, let g(z) = 1.
If y # 0, let g(z) = 0. Either way, g(z) # y = M (x).

Suppose M is any Turing machine that computes g. We show that M (ej;) runs for more than
2leml steps. Suppose to the contrary that M (e;) halts in at most 2" steps and outputs . Then by
definition of g, g(eps) # y. But this contradicts the assumption that M (correctly) computes g.

We have thus shown that any machine M that computes g(x) must run for a long amount of
time (i.e., more than 2" steps) on at least one input x, namely, on the input x = ej;. But this alone
isn’t enough to conclude that M does not run in polynomial time. For that, we need a function f(x)
satisfying the stronger property that any machine that computes f(x) runs for more than 2™ steps
on infinitely many inputs x of length n.

A very slight modification of the above construction gives us the desired function f(z). Let
v(z) be a polynomial-time computable function such that for every string z, there are infinitely
many x such that y(z) = z. Given an input string x, compute z = 7(z) and determine whether
or not z is a syntactically valid description of some Turing machine M. If not, halt and output
f(z) = 0. Otherwise, use the universal machine U to simulate 2/*! steps of M (z). Suppose M
halts on 2 within that many steps and produces output string y. If y = 0, let f(x) = 1. If y # 0, let
fz) =0l

Now, suppose M is any Turing machine that computes f. Then by an argument similar to
that above for g(z), we show that M (z) runs for more than 2/*! steps for every input z for which
~v(x) = epr. Suppose to the contrary that M on such an input x halts in at most 217l steps and
outputs y. Then by definition of f, f(x) # y. But this contradicts the assumption that M (correctly)
computes f.

It remains to describe how to build such a function ~. A pairing system is a collection of three
polynomial-time computable functions p, 71, and 72 such that

1. pisa 1-1 mapping from pairs of strings to strings.

2. The projection functions 71 and 79 satisty m1 (p(u, v)) = u and ma(p(u,v)) = v.

'Note that the only difference between the constructions of f and ¢ is the attempt to interpret z = ~(z) as the
description of some Turing machine M rather than x itself.

CPSC 461b Lecture Notes 2 (rev. 1) 3

Given a pairing system, we define v(z) = m1(z). This has the desired properties since for every x
such that z = p(z,v) we have y(z) = 71 (z) = z, and there are infinitely many such x as v varies
over all possible values.

Finally, we must construct a pairing system. Many are possible, but one simple one is to define
p'(z,y) = x2y as a string over the 3-letter alphabet {0, 1,2} and then define p(z,y) = o(p/(z,y)),
where o encodes each letter of the new alphabet as pairs of bits, so ‘0’ is encoded as 00, ‘1’ as 01,
and ‘2" as 10. Thus, p(01,101) = ¢(012101) = 0001 1001 00 01.

6 An Alternative View of NP

In section[3.5] we define the class NP (for “non-deterministic polynomial time) as those languages
whose members have short, easily checkable witnesses. We now give an alternative view in terms
of non-deterministic Turing machines.

A configuration of a Turing machine is the complete description of the progress of a computa-
tion, including the entire contents of the non-blank portion of the tape, the current head position,
and the internal state of the Turing machine’s finite memory. One can imagine an infinite graph G
where the nodes are all possible Turing machine configurations, and two nodes w and v are con-
nected by a directed edge (u,v) iff the Turing machine, when started in configuration u, reaches
configuration v in one step. This graph has out-degree at most one. Halting nodes have no outgoing
edges; non-halting nodes have a single outgoing edge.

A Turing machine can be thought of as a device that constructs a path in G starting from the
initial configuration. The path terminates in a halting configuration if the machine halts; otherwise,
the path is infinite.

A non-deterministic Turing machine is the same as a (deterministic) Turing machine except that
a node u in the configuration graph can have two outgoing edges (u,v1) and (u,vy). This arises
when the machine has a choice of two possible next moves; namely, it can choose to go to v; or
to v3. We do not specify how the machine makes such a choice, so a non-deterministic machine
is not a “machine” in the usual sense of something that could be implemented in the real world.
Rather, think of its actions as being incompletely specified, so in certain configurations, it can take
either of two possible actions. (This is as if C programs had a construct choose {<blockl>}
or {<block2>})

The graph G of a non-deterministic Turing machine M can have many different paths starting
from the initial configuration, and each of these is a possible “computation” of the machine. We say
that an input x is accepted by M in at most t steps if there exists a path in G of length at most ¢
from the initial configuration of M on input x to some halting configuration. The set of all « that
are accepted by M (in any number of steps) is the language L s accepted by M.

We say that a language L is in A/P if there is a non-deterministic Turing machine M and a
polynomial p(n) such that M accepts every x € L in at most p(|x|) steps, and M does not accept
any x ¢ L (in any number of steps).

To relate this to the definition given in section [3.5] we externalize the choices made by a non-
deterministic machine. Imagine we give M a second input string y which we call a choice sequence.
Every time M has a choice to make, it reads the next bit of y and makes the first or second possible
choice depending on that bit. This turns M into an ordinary deterministic Turing machine with two
inputs, z and y. If the original non-deterministic machine accepts x within ¢ steps, then there exists
a choice sequence y of length at most ¢ such that M (z,y) halts in at most ¢ steps. Conversely,
if the non-deterministic machine does not accept x, then M (z,y) does not halt for any y. Thus,
y becomes a witness to the membership of « in L, and the deterministic machine M becomes a

4 CPSC 461b Lecture Notes 2 (rev. 1)

verifier for proofs of membership in L.

There are some technical details which I won’t go into here having to do with non-halting
computations, for our definitions in section @] assume that the relation Ry is computable in de-
terministic polynomial time, which means that the machine computing it always halts within the
allowed time bound and correctly answers whether or not Ry (x,y) is true. However, this isn’t a
serious difference, for given a machine M (z,y) that either halts in at most p(|z| + |y|) steps for
some polynomial p(n) or never halts, we can convert it into a machine that always halts by first
computing t = p(|z| + |y|) and then simulating the original machine for ¢ steps. If the original
machine halts within that time bound, the new machine halts and says true. If not, the new machine
halts and says false.

The notion of splitting a non-deterministic computation into a deterministic part and a choice
sequence becomes particularly convenient in the next section where we consider probabilistic Tur-
ing machines — machines with choices where the choices are made according to random flips of an
unbiased coin.

	Turing Machine Descriptions and Simulations
	Universal Turing machines
	What can we do with a program?

	A Hard Problem
	An Alternative View of NP

