
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 461b: Foundations of Cryptography Notes 5 (rev. 1)
Professor M. J. Fischer January 27, 2009

Lecture Notes 5

15 Other Classes of One-Way Functions

Our definitions of strongly and weakly one-way functions are liberal in the functions that may be
considered one-way, but they are restrictive in requiring that one-way functions be hard to invert
on almost all lengths n. We explore variations in the definitions, both to achieve properties that are
desirable in practice and to gain practice in working with the definitions.

15.1 One-way functions on certain lengths

Natural candidate one-way functions might be defined only on strings of certain lengths. For ex-
ample, a graph-theoretic function that might be conjectured to be one-way might take as input the
adjacency matrix of an N -node graph, which is naturally encoded as a binary string of length N2.
Such a function would only be defined for strings whose length is a perfect square, and we would
not care what it did or whether it was hard to invert for inputs that were not perfect squares. We are
therefore led to consider functions that are defined only for certain lengths.

Let I ⊆ N−{0} be an infinite set of lengths. Define sI(n) to be the smallest integer n′ > n such
that n′ ∈ I . We say that I is polynomial-time enumerable if there is a polynomial time algorithm
that on input n writes sI(n) 1’s on its output tape and halts. It follows that sI(n) is polynomially
bounded since a polynomial-time computation cannot produce an output string that is longer than
its running time.1 Note also that by excluding 0 from I , we have I = {sI(n) | n ∈ N}.

For example, suppose I = {n2 | n ∈ N − {0}}. Then sI(3) = 4 and sI(4) = sI(5) =
sI(6) = sI(7) = sI(8) = 9. We can compute sI(n) as follows: Test n + 1, n + 2, . . . , until a
number m is reached that is a perfect square, and output m in unary. This algorithm is easily seen
to be computable in polynomial time since testing if a number m is a perfect square can be done
in polynomial time, and at most n numbers need to be tested before encountering a perfect square.
(More precisely, the worst case comes when n = k2 itself is a perfect square, in which case at most
(k + 1)2 − k2 = 2k + 1 = O(

√
n) numbers must be tested.)

Definition: Let I ⊆ N be a polynomial-time enumerable set. The function f is strongly one-way
on lengths in I if it satisfies the following conditions:

1. f is computable in polynomial time.

2. For all probabilistic polynomial-time algorithms A′, all positive polynomials p(·), and all
sufficiently large n ∈ I ,

Pr[A′(f(Un), 1n) ∈ f−1(f(Un))] <
1

p(n)
. (1)

1Strictly speaking, this depends on ones input and output conventions. For example, a Turing machine that used the
same tape for both input and output might be able to “compute” the identity function by simply halting immediately, but
in any case, the length of the output string would be bounded by n + p(n), where n is the length of the input string and
p(n) is a polynomial bound on the running time.

2 CPSC 461b Lecture Notes 5 (rev. 1)

Definition: Let I ⊆ N be a polynomial-time enumerable set. The function f is weakly one-way on
lengths in I if it satisfies the following conditions:

1. f is computable in polynomial time.

2. There exists a positive polynomial p(·) such that for all probabilistic polynomial-time algo-
rithms A′ and all sufficiently large n ∈ I ,

Pr[A′(f(Un), 1n) 6∈ f−1(f(Un))] >
1

p(n)
. (2)

Note that these definitions become identical to the respective original definitions for strongly
and weakly one-way functions if one takes I = N, so they are strict generalizations of the former
concepts.

One can easily transform a strongly (weakly) one-way function f on lengths in I into an ordinary
strongly (weakly) one-way function g.

Theorem 1 Let I ⊆ N be polynomial-time enumerable, and let f be strongly (weakly) one-way
on lengths in I . Define g(x) = f(x′), where x′ is the longest prefix of x such that |x′| ∈ I , and
g(x) = 0 if x itself is shorter than any string in I . Then g is strongly (weakly) one-way.

Proof: We first describe a polynomial-time algorithm to compute g. Note that m ∈ I iff sI(m −
1) = m, so we can test membership in I in polynomial time. On input x, we test the lengths of
successively shorter prefixes x′ of x, beginning with x itself, until one is obtained that is in I or we
determine that none are in I . We then output f(x′) or 0 depending whether such a prefix is found.
This takes time O(np(n) + q(|x′|)), where p(·) bounds the time to compute sI and q(·) the time to
compute f . It follows that g can be computed in polynomial time.

We now show that g is hard to invert. Suppose to the contrary that there is a p.p.t. algorithm A′

and a polynomial p(·) such that for infinitely many n,

Pr[A′(g(Un), 1n) ∈ g−1(g(Un))] ≥ 1
p(n)

. (3)

That is, A′ successfully inverts g a noticeable amount of the time on an infinite set of lengths I ′.
We construct an algorithm A and show that it successfully inverts f a noticeable amount of the

time on an infinite subset of I . Here’s how A works. A(y, 1m) runs A′(y, 1n) for each n such that
m ≤ n < sI(m). Suppose A′(y, 1n) produces output x′. A tests if y = f(x′), and if so, it outputs
x′ and halts. If it fails to invert f for all values of n, then it outputs failure and halts.

Let J = {m ∈ I | {m, m + 1, . . . , sI(m) − 1} ∩ I ′ 6= ∅}, that is, J consists of those m ∈ I
such that the interval [m, sI(m)− 1] includes a number n ∈ I ′, the infinite set of lengths for which
equation 3 holds. We argue that

Pr[A(f(Um), 1m) ∈ f−1(f(Un))] ≥ Pr[A′(g(Un), 1n) ∈ g−1(g(Un))] (4)

holds for all m ∈ J and n ∈ [m, sI(m)].
First, we claim that f(Um) and g(Un) are identically distributed random variables. This is

because if x has length n, then the longest prefix x′ of x with |x′| ∈ I is the prefix of length m,
and the length-m prefixes of uniformly distributed strings of length n are themselves uniformly
distributed. Moreover, by definition of g, g(x) = f(x′), so the claim follows.

CPSC 461b Lecture Notes 5 (rev. 1) 3

Let y = g(x) = f(x′). A(y, 1m) succeeds in inverting f on y if A′(y, 1n) succeeds in inverting
g on y for any n ∈ [m, sI(m)] since it tries them all. Hence, it’s probability of success is at least as
great as that of A(y, 1n).

Finally, combining inequalities 3 and 4 gives that

Pr[A(f(Um), 1m) ∈ f−1(f(Un))] ≥ 1
p(n)

(5)

holds for all m ∈ J ⊆ I , contradicting the hypothesis that f is strongly one-way on lengths in I .

The proof for weakly one-way functions is similar and is omitted.

16 Regular and length-preserving functions

A function f on strings is length regular if |x| = |y| ⇒ |f(x)| = |f(y)|. Thus, the length of the
argument determines the length of the result. f is length preserving if |f(x)| = |x|.

We first remark that if the function f of Theorem 1 above is length preserving, a slight modi-
fication of the construction of g can make it length preserving as well. Namely, if x′ is the longest
prefix of x with |x′| ∈ I , let x′′ be the remainder of x, so x = x′x′′, and define g(x) = f(x′)x′′.
The proof would have to be adjusted accordingly and is left as an exercise.

We now show that if f is an arbitrary strongly (weakly) one-way function, we can construct a
length-preserving strongly (weakly) one-way function f ′′. We do it in two stages:

1. Let p(·) be a polynomial such that |f(x) ≤ p(|x|). Such a p(·) exists since f is polynomial-
time computable. Then

f ′(x) df= f(x)10p(|x|)−|f(x)|. (6)

Clearly f ′ is length regular since |f ′(x)| = p(|x|) + 1 for all x.

2. Let I = {p(n)+1 | n ∈ N}. We define f ′′ on strings of lengths in I . Let |x| = p(n)+1 ∈ I .
Write x = x′x′′, where |x′| = n and |x′′| = p(n) + 1− n. Then

f ′′(x) df= f ′(x′) = f(x′)10p(n)−|f(x)|. (7)

|f ′′(x)| = |f ′(x′)| = p(|x′|) + 1 = |x|, so f ′′ is length regular.

The proofs that f ′ and f ′′ are strongly (weakly) one-way given that f is are similar to the proof
of Theorem 1 and are left as exercises.

17 Non-uniform one-way functions

A function f is non-uniformly strongly (weakly) one-way if it satisfies the definition for being
strongly (weakly) one-way, where the inverting algorithm is allowed to be a non-uniform fam-
ily {M0, M1, M2, . . .} of polynomial-time Turing machines with polynomial-size descriptions, or
equivalently, a family of polynomial-size circuits {Cn}n∈N. One can show that anything com-
puted by a Turing machine in polynomial time can also be computed by a non-uniform family of
polynomial-time polynomial-size Turing machine or by a polynomial-size family of circuits. As a
result, we have:

Theorem 2 If f is non-uniformly strongly (weakly) one-way, then f is strongly (weakly) one-way.

4 CPSC 461b Lecture Notes 5 (rev. 1)

The converse is not known, and there remains the possibility that strongly (weakly) one-way func-
tions exist but non-uniformly strongly (weakly) one-functions do not.

It is also conceivable that weakly one-way functions exist but strongly one-way functions do
not. However, we prove that is not the case, which will be the next topic.

	Other Classes of One-Way Functions
	One-way functions on certain lengths

	Regular and length-preserving functions
	Non-uniform one-way functions

