
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 461b: Foundations of Cryptography Notes 8 (rev. 1)
Professor M. J. Fischer February 5, 2009

Lecture Notes 8

20 Collections of Functions

Although we have defined one-way functions on the infinite domain of all binary strings, for crypto-
graphic applications we are often interested in strings of of a fixed length n, where n is determined
by a security parameter. We have already seen in section 15.1 of lecture 5 that a one-way function
defined only on lengths in a set I can be used to build a one-way function defined on all lengths,
provided that I is polynomial-time enumerable. Intuitively, this just means that I is not too sparse
and there are feasible algorithms for enumerating I and deciding membership in I—all the things
you would expect from a “nice” set, for example, the set of all even numbers.

Later, when we want to talk about trapdoor functions, we’ll again need to consider lengths
separately, since a trapdoor string (think RSA private key for now) only works for a finite set of
inputs (the numbers in Z∗n for RSA). Because of this, we shift gears slightly and consider infinite
collections of finite functions instead of a single infinite functions.

Definition: A collection of functions consists of an infinite set of indices Ī and a family of functions
{fi}i∈Ī . For each i ∈ Ī , the domain of fi is a finite set Di.

For cryptographic applications, we need some additional properties. Namely, given an index
(description) i ∈ Ī , we need to be able to compute fi(x) given i ∈ Ī and x ∈ Dn. In addition, we
need to be able to be able to randomly sample (not necessarily uniformly) from both Ī ∩ {0, 1}n
and fromDi.

Definition: A collection of functions F = {fi}i∈Ī indexed by Ī is said to be useful if there are
probabilistic polynomial-time algorithms I and D and deterministic algorithm F that satisfy the
following:

1. The output distribution of I(1n) is a random variable ranging over Ī ∩ {0, 1}n.

2. The output distribution of D(i) for i ∈ Ī is a random variable ranging over Di.

3. F (i, x) = fi(x) for all i ∈ Ī and x ∈ Di.

We say that F is described by Ī , I , D, and F .

20.1 Collections of One-Way Functions

Now we can define the strongly one-way property for useful collections of functions.

Definition: Let F be a useful collection of functions described by Ī , I , D, and F . We say F is
strongly one-way if for every probabilistic polynomial-time algorithm A′, every positive polynomial
p(·), and all sufficiently large n,

Pr[A′(In, fIn(Xn)) ∈ f−1
In

(fIn(Xn))] <
1

p(n)
,

2 CPSC 461b Lecture Notes 8 (rev. 1)

where In is the random variable I(1n), and Xn is the random variable D(In). Following the usual
convention, all occurrences of In refer to the same randomly chosen value i = I(1n), so in particu-
lar, In and Xn are not assumed to be independent; rather, Xn = D(i) for the chosen i.

In words, an experiment consists of choosing random values i = I(1n) and x = D(i) using the
probabilistic algorithms I and D, computing y = F (i, x), and choosing random x′ = A′(i, y). The
experiment is said to succeed if and only if F (i, x′) = y. The strongly one-way property requires
that the overall probability of success of an experiment be at most 1/p(n). Note that this probability
is averaged over several sources of randomness: the choice of i, the choice of x, and the randomness
in the algorithm A′. Because the requirement is only on the average success probability, it does not
preclude higher success probabilities for particular values of i ∈ Ī or x ∈ Di.

20.2 Examples of One-Way Collections

RSA collection of functions The index set Ī consists of pairs (N, e), where N = PQ for distinct
primes P , Q of equal length and e ∈ Z∗N . For i = (N, e) ∈ Ī , we have Di = Z∗N and fi(x) = xe

(mod N).
To show that the RSA collection satisfies the definition for a useful collection of functions, we

must give algorithms IRSA, DRSA, and FRSA. Briefly, IRSA(1n) selects uniformly distinct primes P
and Q of length n, sets N = PQ, selects uniformly an integer e ∈ Z∗N , and returns the pair (N, e).
Algorithm DRSA((N, e)) simply selects uniformly an element from Z∗N . FRSA((N, e), x) = xe

(mod N). All three of these algorithms were presented in CPSC 467 in the context of RSA. IRSA

is the key generation algorithm, which also uses the algorithm DRSA for sampling from Z∗N in order
to select e. FRSA is the algorithm for computing the RSA encryption function.

It is an open problem if RSA is strongly one-way, or even if it is as hard to invert as factoring,
but no feasible algorithm for inverting it has yet been discovered.

Other collections See the textbook for other examples of one-way collections, namely, the Rabin
Function, the Factoring Permutations, and Discrete Logarithms.

20.3 Trapdoor One-Way Permutations

A collection of strongly one-way trapdoor permutations is similar to the collection of strongly one-
way functions defined in section 20.1, except that the functions are required to be permutations
(i.e., one-to-one and onto), and the index set is expanded to include the index of an algorithm
for computing the inverse f−1(y) = x. Namely, Ī = Ī1 × Ī2, where Ī1 is the set of indices
of permutations in the collection, and Ī2 is the set of indices of the inverses of functions in the
collection.

The algorithm I(1n) returns a pair (i, t) ∈ Ī1 × Ī2, where i has length n, and t has length
polynomial in n. The index i describes a permutation fi in the collection and is interpreted by
the algorithm F as before, namely, F (i, x) = fi(x) for all x ∈ Di. The index t describes the
inverse f−1

i of fi and is interpreted by a fourth required algorithm, F−1, with the property that
F−1(t, y) = f−1

i (y).
See the textbook for more details as well as variations on this definition that allow the required

algorithms to have small probability of failure (as for example the RSA key generation algorithm
does in the unlikely case that the probabilistic primality test fails and uses a non-prime for P or Q).

Example The RSA collection of functions is easily extended to the RSA collection of trapdoor
permutations. Namely, Ī2 consists of pairs (N, d), and IRSA(1n) = ((N, e), (N, d)), where (N, e)

CPSC 461b Lecture Notes 8 (rev. 1) 3

is the public RSA key, (N, d) is the private key, and F−1((N, d), y) = yd (mod N).

21 Hard-Core Predicates

Let f be a strongly one-way function. By definition, no algorithm can invert f with a non-negligible
success probability, but this doesn’t preclude algorithms that can “partially” invert f in the sense
of recovering a lot of information about the inverse. For example, we observed earlier that if f is
strongly one-way, then so is

g(u, v) = (f(u), v),

where |u| = |v|, even though given y = (f(u), v), we can easily recover half of the bits of an
x′ = (u′, v′) for which f(x′) = y, namely, we know that y′ = y.

We’d like to know the answers to questions such as the following:

1. Suppose f(x) = y. Is there some bit xi of x that cannot be predicted with non-negligible
success probability, or can every individual bit be so predicted?

2. Suppose neither bits xi nor xj can be predicted for i 6= j given only y = f(x). Can we
predict some function of them, e.g., xi ⊕ xj?

3. How many “hard” bits does a one-way function give us?

To begin thinking about these questions, we define the notion of a “hard-core” predicate b of a
strongly one-way function f . The idea is that b is a predicate that depends on x, but b cannot be
predicted with better than 1

2 + ε accuracy given only y = f(x).
There are two reasons why this might be the case. One is that if f is not one-to-one, then f loses

information, so we might have y = f(x′) = f(x′′) for x′ 6= x′′, yet b(x′) 6= b(x′′). In this case, our
chance of correctly guessing b given y is exactly 1

2 , since it is equiprobable given y whether x = x′

or x = x′′.
On the other hand, if f is one-to-one, then the only thing that makes b hard to compute is if f is

hard to invert. Hence, we are primarily interested in the case of functions f that are both strongly
one-way and also one-to-one. Nevertheless, we state the definition of hard-core in the more general
form without the requirement that f be 1-1.

Definition: Let f be a function. A polynomial-time computable predicate b : {0, 1}∗ → {0, 1} is a
hard core of f if, for every probabilistic polynomial-time algorithm A′, every positive polynomial
p(·), and all sufficiently large n,

Pr[A′(f(Un)) = b(Un)] <
1
2

+
1

p(n)
.

Given any such algorithm A′, we define the advantage of A′ (at predicting b(x) given f(x)) to be
the quantity

εA′(n) = Pr[A′(f(Un)) = b(Un)]− 1
2

Thus, b is a hard core of f if εA′(n) is a negligible function for every p.p.t. algorithm A′.

Our goal in the next two lectures is to prove the theorem

Theorem 1 If strongly one-way functions exist, then there exists a strongly one-way function that
has a hard-core predicate.

4 CPSC 461b Lecture Notes 8 (rev. 1)

We proceed by considering strongly one-way functions g of a special kind. Let f be strongly
one-way and length-preserving. For |x| = |r|, define

g(x, r) df= (f(x), r).

Lemma 2 g is strongly one-way (on even lengths).

Proof: The fact that g is strongly one-way on even lengths is obvious, since the first half x of any
inverse (x, r) of g(y, r) is also an inverse of f(y). Hence, an algorithm F to invert f , given an
algorithm G for inverting g, merely guesses a string r of the same length as y, computes (x′, r′) =
G(y, r), and outputs x′. Algorithm F has the same success probability at inverting f given y as
algorithm G has at inverting g given y and r. Since F has negligible success probability, then so
does G; hence, g is strongly one-way (on even lengths) since f is strongly one-way.1

For |x| = |r|, define the predicate

b(x, r) df= x · r mod 2.

Here, x · r is the ordinary vector dot product when the strings x and r are regarded as bit vectors.
More formally, if xi and ri denote the ith bits of x and r, respectively, then x · r =

∑n
i=1 xiri, and

x · r mod 2 = (
∑n

i=1 xiri) mod 2. This can be expressed using the Boolean operators ∧ (“and”)
and ⊕ (“exclusive-or”):

x · r mod 2 =
n⊕

i=1

(xi ∧ ri).

Lemma 3 b is a hard core of g.

The general outline of the proof is similar to the proof that a strongly one-way function can be
constructed from a weakly one-way function. Namely, we assume that b is not a hard core of g,
so there is an algorithm G for predicting b with a non-negligible advantage εG(n). Using G, we
construct an algorithm A for inverting f . We then analyze the success probability of F and show
that it is non-negligible. This contradicts the assumption that f is strongly one-way, from which we
conclude that b really is a hard core of g.

1A careful proof will have to take account of the fact that the lengths of the strings on which F and G have the same
success probability (y for F and (y, r) for G) differ by a factor of 2, so the bound on F ’s success probability on strings
of length n is the same as the bound on G’s success probability on strings of length m = 2n. One must show for all
polynomials p(·) that the latter is bounded by 1

p(m)
for all sufficiently large even lengths m if the former is bounded by

1
p(n)

for all sufficiently large n.

	Collections of Functions
	Collections of One-Way Functions
	Examples of One-Way Collections
	Trapdoor One-Way Permutations

	Hard-Core Predicates

