
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 461b: Foundations of Cryptography Notes 13 (rev. 1)
Professor M. J. Fischer February 24, 2009

Lecture Notes 13

32 Review of Lecture 12

Lecture 12 covered several technical proofs fairly quickly. In this lecture, we reviewed the three
theorems from last time and focused on the key ideas that made the proofs work. (The complete
proofs are contained in the written notes for Lecture 12.)

Building G from G1: The big idea that makes the hybrid proof work is that the distinguisher D′ is
given as argument either α = G1(Un) or α = Un+1. In either case, it splits α into two parts
τ ·α′ and constructs the string w = τ ·G(α′). If α = G1(Un), then w = τ ·G(α′) = G(Un).
If α = Un, then w = U1 · G(Un). Hence, the difference is simply whether w starts directly
with the bits from G(Un) or whether it starts with a random bit τ followed by G(Un). This
fits in with the construction of the hybrids, so when w is prefixed with a random β of length-k
and truncated to total length p(n), the resulting hybrid is either Hk

n or Hk+1
n .

Pseudorandom⇐ Unpredictable: Here, the hybrids are strings with k bits from the pseudoran-
dom generator followed by n − k random bits. Assume D is a distinguisher for the pseudo-
random strings. The next-bit predictorA that we construct generates a hybrid for a randomly-
chosen k and then calls the distinguisher D on it. A outputs the first of the n− k random bits
if the distinguisher answers 1, and it outputs the complement otherwise. This works since D
was assumed to be more likely to output 1 on pseudorandom strings than on truly random
ones.

Pseudorandom implies strongly one-way Given a pseudorandom function G(s) with expansion
factor 2n, the proof constructs the function f(x, y) = G(x) and proceeds to derive a contra-
diction to the assumption that f is not strongly one-way. While f is attractive because it is
length-preserving, it seems that the proof goes through just fine for G itself. Assume G were
not strongly one-way, and let A be an algorithm that inverts it with non-negligible success
probability. Then here’s how to distinguish G(s) from U2n. On input α, use A to find s′ such
that G(s′) = α. If such an s′ is found, output 1; else output 0. If the input is α = G(s),
the distinguisher will output 1 with probability the same as A’s success probability, which is
at least 1

p(n) for some polynomial p(·). If the input is α = U2n, then the distinguisher will
output 0 whenever U2n is not in the range of G(s) (as s ranges over length-n strings). The
size of the range is 2n but the number of choices for α is 22n, so the probability of giving
output 1 in this case is at most 2n/22n = 1/2n. Hence, the difference in probabilities is at
least 1

p(n) −
1
2n >

1
2p(n) , contradicting the assumption that G is pseudorandom.

33 Pseudorandom Generator from Strongly One-Way Permutation

The construction of a pseudorandom generator from an arbitrary strongly one-way function is com-
plicated and not included in the textbook. However, if strongly one-way permutations exist, then it
is straightforward to construct a pseudorandom generator.

2 CPSC 461b Lecture Notes 13 (rev. 1)

Theorem 1 Let f be a length-preserving 1-1 strongly one-way function and b a hard core for f .
Then

G(s) = f(s) · b(s)

is a pseudorandom generator.

Proof: Assume G is not pseudorandom. Then there exists a bit predictor A with significant advan-
tage. Let α = G(s), where s = Un. Because f is 1-1, f(Un) is uniformly distributed on length-n
strings, so A can’t predict any of the first n bits of α with any advantage. Since A does have an
advantage overall, then it must have an advantage at predicting bit n + 1. But this means that A is
able to get an advantage at predicting b(s) after having read f(s), contradicting the assumption that
b(s) is a hard core for f .

Theorem 1 gives an easy and efficient method for constructing a polynomial-expansion pseu-
dorandom number generator given a strongly one-way permutation f with a hard core predicate b.
Namely, on initial seed s, do the following:

1. s0 = s
2. n = |s|
3. for j = 1 to p(n) {
4. σj = b(sj−1)
5. sj = f(sj−1)
6. }
7. Output σ1 . . . σp(n).

34 Pseudorandom Functions

An `-bit function ensemble is a sequence F = {Fn}n∈N of random variables such that Fn assumes
values in the set of functions mapping `(n)-bit-long strings to `(n)-bit-long strings. The uniform
`-bit function ensemble, H = {Hn}n∈N, has Hn uniformly distributed over the set of all functions
mapping {0, 1}`(n) → {0, 1}`(n).

Definition: An `-bit function ensemble F is pseudorandom if, for every probabilistic polynomial-
time oracle machine M , every positive polynomial p(·), and all sufficiently large n,

|Pr[MFn(1n) = 1]− Pr[MHn(1n) = 1]| < 1
p(n)

.

Definition: An `-bit function ensemble F is efficiently computable iff there exist polynomial-time
algorithms I , V such that

1. φ(I(1n)) and Fn are identically distributed, where φ maps strings to functions. (Think of the
strings as somehow describing functions, and φ(i) is the function that the string i describes.)

2. V (i, x) = fi(x) for every i in the range of I(1n) and x ∈ {0, 1}`(n), where fi = φ(i) is the
function described by i.

In the next lecture, we will show how to construct an efficiently computable `-bit pseudorandom
function ensemble, starting from a pseudorandom generator G with expansion factor 2n.

	Review of Lecture 12
	Pseudorandom Generator from Strongly One-Way Permutation
	Pseudorandom Functions

