
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 461b: Foundations of Cryptography Notes 16 (rev. 1)
Professor M. J. Fischer March 24, 2009

Lecture Notes 16

38 Partial Disclosure of Information

Suppose Alice has encrypted all of her files and placed them on a public file server. She reveals one
file to Bob by decrypting, perhaps because Alice runs a song library and Bob has paid her for that
particular song. Bob doesn’t trust Alice and wants to know for sure that the song Alice just sent him
is really the same one that is stored encrypted on the file server. How does Alice convince Bob that
she sent him the right song?

One solution would be for Alice to send Bob the decryption key. Then Bob could decrypt the
encrypted file himself. However, assuming all of the songs are encrypted using the same key, this
would result in Bob learning the decryptions of all songs in the library. The question is whether
there is some way for Alice to convince Bob that she gave him the correct song without giving him
any other “knowledge” other than this one fact. A way of doing this, when it is possible, is called a
zero-knowledge proof.

Here is another example. f is a one-way permutation, and b is a hard-core predicate for f . Alice
has a secret x and makes y = f(x) public. She reveals the value of b(x) (a single bit 0 or 1). How
can she convince Bob that the bit c she sent him is really the value of b(x) without also revealing
additional information about x? Again, a zero-knowledge proof is desired.

Both of these problems are examples of situations in which Alice has secret information xwhich
determines some value v = g(x) that she wants to give to Bob. She wants to convince Bob that v is
correct without revealing any more information about x than is implied by the fact v = g(x).

39 The Classical Concept of Proof

To begin the discussion of zero knowledge proofs, we look first at the question of what it means to
“convince” Bob of the truth of a statement such as v = g(x).

In classical mathematics, a convincing argument is called a proof. It is generally formalized as a
sequence of logical statements such that each statement in the sequence is a self-evident truth called
an axiom, or it follows from one or more previous statements using a valid rule of inference. All
statements in the proof are considered to be valid, and the last statement is called the theorem that
the proof establishes.

One generally assumes that there are feasible algorithms for testing if a given statement is an
axiom and for testing if a statement follows from one or more previous statements using a valid rule
of inference. Given such algorithms, one can then verify the validity of the statements in the proof
one at a time in sequence, starting from the top. If all statements check out, then the last statement,
which is the theorem to be proved, is also valid. Obviously, a proof system is only useful if the
given algorithms are feasible.

Let T be the set of valid statements (theorems) that one wishes to prove. A proof system for T
is a proof system that satisfies the following conditions:

Soundness: If y is a valid proof of a statement x, then x ∈ T .

2 CPSC 461b Lecture Notes 16 (rev. 1)

Completeness: If x ∈ T , then there exists a valid proof y of x.

That is, anything provable is a valid theorem, and every valid theorem has a proof.
The above discussion focuses completely on the problem faced by the verifier of a proof – how

does one check that a proof is correct? But the proof comes from someone. We call the agent who
produces the proof the prover. We can then view this classical paradigm as a two-party protocol
between P (the prover) and V (the verifier). Given a statement x to be proven, P constructs a proof
y and sends it to V . V verifies that y is a valid proof and checks that the last line of y is equal to
x, the theorem to be proved. If so V accepts the proof y as a valid proof of x; otherwise V rejects
y. Assuming a sound and complete proof system for T , it follows that V accepts only statements
x ∈ T , and for every x ∈ T , there is a prover that will cause V to accept x.

With classical proofs, we do not discuss the problem of how the prover comes up with a proof
of x. In particular, we do not assume that P is a polynomial time algorithm (or even that it is an
algorithm at all). All that matters is whether a proof of x exists or not.

We remark that proofs are only interesting for statements that the verifier can’t (efficiently)
compute directly. For example, the veracity of the statement 1 + 2 = 3 is easily checked by just
evaluating the left and right hand sides and checking for equality, so supplying a proof of that fact
does not materially ease the verifier’s job.

On the other hand, let L be an NP language. Recall from section 3.5 that L ∈ NP iff there is
a polynomial-time computable relation RL(x, y) and a polynomial q(n) such that

L = {x ∈ {0, 1}∗ | ∃y ∈ {0, 1}∗(|y| ≤ q(|x|) ∧RL(x, y))}.

A string y is a witness to x’s membership in L iff |y| ≤ q(|x|) and RL(x, y) is true.
Although there is no known feasible algorithm for deciding statements of the form x ∈ L, with

the help of a witness y, it is easy to verify that x ∈ L. Namely, just check (x, y) ∈ RL. Thus, y
can be considered to be a “proof” of x, not in the classical sense described above, but in the sense
of their being a feasible verification algorithm (RL) for determining whether or not a string y is a
valid proof of the statement x ∈ L.

40 Interactive Proofs

Interactive proofs generalize the classical framework in several respects:

• Classical proofs are one-way protocols: A prover P sends a value y to a verifier V , after
which V either accepts or rejects the proof. Interactive proofs permit multiple rounds of
back-and-forth communication between P and V .

• Interactive proofs relax the soundness condition and permit V to accept a purported “proof”
of a false theorem with small probability.

• Interactive proofs relax the completeness condition and permit P to fail to produce a valid
proof of x with small probability.

These vague requirements will be made more precise below.

40.1 Interactive Turing machines

We formalize the notion of two parties P and V interacting according to a protocol. Intuitively, P
and V are concurrent algorithms that can send and receive messages. However, in order to simplify

CPSC 461b Lecture Notes 16 (rev. 1) 3

the reasoning, we assume that P and V are not truly concurrent but that they instead take turns:
When it is P ’s turn, P runs until it is done with this phase and V waits. When P is done, the
message it has constructed is transmitted to V , P is suspended, and V is activated. Now V runs
until it is done with this phase, at which point it is suspended and P is reactivated with the message
from V . This back-and-forth computation continues until one of the machines halts (rather than
suspending), in which case the protocol stops. Note that it is possible for one of the machines to
run forever during its phase, in which case the other machine remains suspended forever and never
makes further progress.

We formalize the parties P and V as particular kinds of Turing machines. An interactive Turing
machine M is a Turing machine with several tapes:

• A read-only input tape.

• A read-only random tape.

• A read/write work tape.

• A write-only output tape.

• A write-only outgoing communication tape.

• A read-only incoming communication tape.

• A read/write switch tape consisting of only a single cell.

LetA andB be interactive Turing machines. A joint computation ofA andB consists of placing
a common input x on the input tapes of both A and B, placing an infinite sequence of independent
uniformly distributed random bits on A’s and B’s random tapes, and placing 0 on the switch tape.
(The switch tape determines which machine is currently activated – 0 for A and 1 for B.) Control
switches from A to B when A writes 1 on the switch tape. At that time, the system copies the
contents of A’s outgoing communication tape to B’s incoming communication tape, suspends A,
and resumes B. Similarly, when B changes the switch tape from 1 to 0, the system suspends B,
copies its outgoing communication tape to A’s incoming communication tape, and resumes A. This
process continues until one of the machines halts, at which time the contents of the two output tapes
is considered to be the result of the joint computation.1

For interactive proofs, we are generally only interested in the output of the verifier. We write
〈A,B〉(x) to denote the output of B in the joint computation of A and B with common input x.

40.2 Time complexity

Interactive Turing machine A has time complexity t : N→ N if for all interactive Turing machines
B, for all inputs x, and for all random tapes,A never takes more than t(|x|) steps.2 A is polynomial-
time if there exists a polynomial p such that A has time complexity p.

1 This description of the joint computation of A and B differs slightly from that presented in the textbook. In this
description, we assume an environment that copies data from one machine to the other at the point of the control switch.
In the textbook, it is assumed that the tapes are merged, i.e., that there is a single input tape that is shared by the two
machines, and two shared communication tapes, one for messages from A to B and one for messages from B to A. Even
with these shared tapes, each machine has its own read/write head for viewing the contents of the tape.

2The textbook has the stronger requirement that A always halts within t(|x|) steps no matter what B does. This
stronger requirement seems to be difficult to satisfy if B goes into an infinite loop before A has halted and never acti-
vates A again. However, Goldreich’s remarks following Definition 4.2.3 seems to suggest that he intended a definition
equivalent to ours.

4 CPSC 461b Lecture Notes 16 (rev. 1)

40.3 Interactive proof system

Definition: An interactive proof system for a language L is a pair of interactive Turing machines
(P, V) such that V is polynomial-time and the following conditions are satisfied:

Completeness: For all x ∈ L, Pr[〈P, V 〉(x) = 1] ≥ 2
3 .

Soundness: For all x 6∈ L and all interactive Turing machines B, Pr[〈B, V 〉(x) = 1] ≤ 1
3 .

The class IP consists of all languages having interactive proof systems

Note that completeness depends on both P and V , whereas soundness is a property just of V .
Clearly, NP ⊆ IP since an interactive proof system can be easily constructed from the

polynomial-time relation RL described in section 39. Namely, if x ∈ L, P sends V a witness
y to x ∈ L. V in turn checks that |y| ≤ q(|x|) and (x, y) ∈ RL.3 Note in particular that P is not
required to be polynomial-time; only V is.

Also, BPP ⊆ IP . In this case, the prover need do nothing; the polynomial-time probabilistic
Turing machine M that recognizes L ∈ BPP can be used directly as the verifier, where output
1 means “accept” and 0 means “reject”. Hence, NP ∪ BPP ⊆ IP . Recall that it is not known
whether BPP ⊆ NP .

As with the definition of BPP , the error bounds of 2/3 and 1/3 in the definition can be varied
considerably without changing the concept being defined.

Definition: Let c, s : N → R be functions satisfying c(n) − s(n) > 1
p(n) for some polynomial

p(·). A generalized interactive proof system for a language L with completeness bound c(·) and
soundness bound s(·) is a pair of interactive Turing machines (P, V) such that V is polynomial-
time and the following conditions are satisfied:

Completeness: For all x ∈ L, Pr[〈P, V 〉(x) = 1] ≥ c(|x|).

Soundness: For all x 6∈ L and all interactive Turing machines B, Pr[〈B, V 〉(x) = 1] ≤ s(|x|).

g(n) = c(n) − s(n) is called the acceptance gap and e(n) = max{1 − c(n), s(n)} is called the
error probability.

By this definition, an interactive proof system (P, V) is a generalized interactive proof system
with completeness bound c(n) = 2/3 and soundness bound s(n) = 1/3. The acceptance gap and
error probability are both 1/3.

We present the following non-trivial claim without proof.

Claim 1 The following three conditions on a language L are equivalent:

1. L ∈ IP .

2. For every polynomial p(·), there exists a generalized interactive proof system for L with error
probability e(n) ≤ 2−p(n).

3V has to be written carefully in order to have polynomial time-complexity according to our definitions. Namely, V
cannot afford to read all of y from its incoming communication tape before checking the condition that |y| ≤ q(|x|).
Rather, it should compute m = q(|x|) first and then read y symbol by symbol, stopping and rejecting when it first
discovers that |y| > m.

CPSC 461b Lecture Notes 16 (rev. 1) 5

3. There exists a polynomial p(·) and a generalized interactive proof system for L with accep-
tance gap g(n) ≥ 1

p(n) . Furthermore, the completeness bound c(n) and the soundness bound
s(n) for this system can be computed in time polynomial in n.

This claim is useful in two ways. If we are given L ∈ IP , we can assume the existence of an
interactive proof system (P, V) with exponentially small error bound (condition 2). On the other
hand, if we are tying to establish L ∈ IP , it suffices to construct an interactive proof system (P, V)
with polynomial-time computable completeness and soundness bounds that have a non-negligible
acceptance gap.

41 Graph Non-Isomorphism is in IP

The graph non-isomorphism language, GNI, is the set of all pairs of graphs (G1, G2) such that G1

is not isomorphic4 to G2, written G1 6∼= G2.
An interactive proof system for GNI is based on the following idea. The verifier picks one of

G1 or G2 at random and generates a random graph H isomorphic to it. Because ∼= is a transitive
relation, if G1 6∼= G2, then H is isomorphic to exactly one of G1 and G2 but not to both. The prover
determines which graph H is isomorphic to and returns the index of that graph (1 or 2), which the
verifier then checks. On the other hand, if G1

∼= G2, the prover gets no information about which
graph was used to generate H since H is equally likely to result whether starting from G1 or G2.
Hence, the prover returns the correct index with probability at most 1/2, so with probability 1/2 the
verifier rejects. Repeating this protocol twice lowers the error probability to below 1/3, as required
by the definition of IP . (Alternatively, one can conclude directly from Claim 1 that GNI ∈ IP
since the acceptance gap of this protocol is 1/2.)

We refer the reader to section 4.2.2 of the textbook for the detailed construction and proof.
However, we make special note of Claim 4.2.9.1, which formalizes the argument presented above
that the prover gets “no information” about the graph chosen by the verifier in the case thatG1

∼= G2.
To give a few of the details, the verifier chooses a random value ξ ∈ {1, 2} and a random

H = Π(Gξ), where for each graph G, Π(G) is a uniformly distributed random variable over the set
{G′ | G′ ∼= G}. We must establish that the random variables ξ and H so defined are statistically
independent, that is, for each τ ∈ {1, 2} and each graph G′ ∼= G1

∼= G2,

Pr[ξ = τ | H(Gξ) = G′] = Pr[ξ = τ] =
1
2
. (1)

This is what says the prover’s probability of correctly guessing ξ after receiving the graph H is still
only 1/2.

Our proof will make use of Bayes’ theorem, which relates the a priori probability of an event A
to the a posteriori probability of A given that event B has occurred.

Theorem 1 (Bayes’ Theorem) Let A and B be events with non-zero probability. Then

Pr[A | B] = Pr[B | A]
(

Pr[A]
Pr[B]

)
Proof: Conditional probability is defined by

Pr[A | B] df=
Pr[A ∩B]

Pr[B]
. (2)

4Graph G1 = (V1, E1) is isomorphic to graph G2 = (V2, E2) if there is an isomorphism π : V1 → V2 (a 1-1 and
onto function) such that (∀u, v ∈ V1)((u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2).

6 CPSC 461b Lecture Notes 16 (rev. 1)

from which it follows that
Pr[A | B] · Pr[B] = Pr[A ∩B]. (3)

Using equation 3 twice (once with the roles of A and B reversed), we obtain

Pr[A | B] · Pr[B] = Pr[A ∩B] = Pr[B | A] · Pr[A],

from which the theorem easily follows.

For a graph G′, the isomorphism class of G′ is the set [G′] = {G | G ∼= G′}. (This is the set
of all graphs isomorphic to G′.) Since ∼= is an equivalence relation and G1

∼= G2, we have that
[G1] = [G2]. Call that set S and let α = 1/|S|. Let G′, G′′ ∈ S. The random variable Π(G′′) is
uniformly distributed over S, so Pr[Π(G′′) = G′] = α, independent of the choice of G′ and G′′.

By the definition of conditional probability, we have

Pr[Π(Gξ) = G′ | ξ = 1] = Pr[Π(G1) = G′]
= α

= Pr[Π(G2) = G′]
= Pr[Π(Gξ) = G′ | ξ = 2].

Applying Bayes’ theorem and the fact that Pr[ξ = 1] = Pr[ξ = 2] = 1/2, we get

Pr[ξ = 1 | Π(Gξ) = G′] = Pr[Π(Gξ) = G′ | ξ = 1] ·
(

Pr[ξ = 1]
Pr[Π(Gξ) = G′]

)
= Pr[Π(Gξ) = G′ | ξ = 2] ·

(
Pr[ξ = 2]

Pr[Π(Gξ) = G′]

)
= Pr[ξ = 2 | Π(Gξ) = G′].

Since also
Pr[ξ = 1 | Π(Gξ) = G′] + Pr[ξ = 2 | Π(Gξ) = G′] = 1,

equation 1 follows.

42 Interactive Proof Systems with Auxiliary Inputs

We mention briefly another generalization of interactive proof systems that will be needed later.
Namely, it is sometimes useful to permit an interactive Turing machine to have an additional private
input tape. We write 〈P (y), V (z)〉(x) to denote V ’s output on a joint computation with common
input x, private input y for P , and private input z for V . The time complexity is still measured in
terms of the length of the common input x, so a machine with time complexity t must never use
more than t(|x|) steps, regardless of its private input. In particular, such a machine might not be
able to read all of its private input and still stay within the allowed time bound.

We extend the completeness and soundness conditions from section 40.3 to account for the
additional inputs as follows:

Completeness: For all x ∈ L, there exists y ∈ {0, 1}∗ such that for all z ∈ {0, 1}∗

Pr[〈P (y), V (z)〉(x) = 1] ≥ 2
3
.

Soundness: For all x 6∈ L, for all interactive Turing machines B, and for all y, z ∈ {0, 1}∗,

Pr[〈B(y), V (z)〉(x) = 1] ≤ 1
3
.

	Partial Disclosure of Information
	The Classical Concept of Proof
	Interactive Proofs
	Interactive Turing machines
	Time complexity
	Interactive proof system

	Graph Non-Isomorphism is in IP
	Interactive Proof Systems with Auxiliary Inputs

