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Lecture Notes 19

47 A Zero-Knowledge Interactive Proof for Graph 3-Coloring

The goal of the next couple of lectures is to show that every language in NP has a zero knowledge
interactive proof. We begin with the graph 3-colorability problem.

47.1 Graph 3-colorability

Definition: Let G = (V, E) be a simple graph. A 3-coloring of G is a function ¢ : V' — {1,2,3}
such that for all (u,v) € E, (u) # (v).

That is, each node is labeled with one of three colors such that no edge connects two nodes of the
same color.

Definition: A graph G is 3-colorable if there is a 3-coloring of GG. The language G3C is the set of
3-colorable graphs.

Fact G3C is N'P-complete.

47.2 The protocol

The protocol makes use of a commitment scheme. For now, assume a family of functions {C; | s €
{0,1}"}en, where Cg(0) € {0,1}* for each s € {0,1}" and 0 € {1,2,3}. Cs(0) is said to be
the commitment of the sender using coins s to the value 0. Cs(o) can be computed in polynomial
time given s and 0. We desire that the commitment scheme satisfy two properties:

Secrecy The commitment Cs(0) to o reveals a negligible amount of information about ¢. In other
words, the receiver of the commitment cannot distinguish commitments to any of the three
colors with non-negligible advantage over random guessing.

Unambiguity If Cs(0) = Cy(0’), then o/ = 0. In other words, given a string ¢, there is at most
one o for which it is a valid commitment.

Formal properties and construction of more general commitment schemes are given in section 48]
The interactive proof for G3C is given in Figure |47.1

Explanation. In step 1 of Figure the prover randomly permutes the colors in the 3-coloring
1 to produce a new 3-coloring ¢ of G It commits to each color ¢(v) for v € V' with the commitment
sequence ¢ and sends ¢. The verifier checks that ¢ is a 3-coloring by asking the prover to reveal
the colors at the two endpoints of a randomly chosen edge (u,v). The prover does so in step 3.
In step 4, the verifier checks that the colors at u and v were revealed correctly and that they are
different.

If both P and V follow this protocol, V' always accepts, establishing completeness. If G is not
3-colorable, then any 3-coloring ¢ committed to by a cheating prover P* in step 1 will have at least
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Common input: Simple graph G = (V, E), where V = {1,...,n}.

Private input: 3-coloring ) of G.

1. Random permutation 7 over {1, 2, 3}.
¢ = o is also 3-coloring of G.

Random s, ...,s, € {0,1}".
Compute ¢; = Cs, (¢(v)) Vv € V.
c=(c1y...,0n). —
2. ) Random (u,v) € E.
(ru,ro)
Ty = (Su, (1)), Tv = (S0, P(v)).
4. Let (Sy, 04) = Ty.

Let (8y,0y) = 4.

Check ¢, = C;, (64,).

Check ¢, = C3,(6).

Check 6, # 6.

Accept iff all checks succeed.

Figure 47.1: Interactive proof for graph 3-colorability.

one edge whose endpoints are colored the same. With probability 1/|E|, V' chooses this edge in
step 2. Whatever values P* sends in step 3 will fail V’s one of V’s checks, either on correctly
opening ¢, or c¢,, or it will finds that v and v are colored the same. Hence, V' will reject with
probability at least 1/|V/].

The construction of the simulator M * to show that this protocol is zero knowledge is deferred
to the next lecture.

48 Bit-Commitment Schemes

A bit-commitment scheme is a pair of probabilistic polynomial-time interactive Turing machines
(S, R) called the sender and receiver, respectively. The common input is a security parameter 1.
The sender’s private input is a bit v. The sender’s commitment to v is the receiver’s view (r,m) of
its interaction with S, where r is the receiver’s random coins and m is the sequence of messages
received from S.

Fix n and let o € {0, 1}. We say a receiver view (r,m) is a possible o-commitment if, for some
string s, m describes the messages received by R when R uses local coins 7, S uses local coins
s, and S has private input o. The view is ambiguous if it is both a possible 0-commitment and a
possible 1-commitment.

Here are the requirements for the commit phase of a bit-commitment scheme:

Input specification The common input is a security parameter 1”. The sender’s private input is a
bit v.

Secrecy For all probabilistic polynomial-time interactive Turing machines R* interacting with .S,
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the probability ensembles

{(5(0), B")(1")fnen  and  {(S(1), B")(1") tnen

are computationally indistinguishable. The notation (S(v), R*)(z) as used here means the
random variable describing the receiver’s view in a joint computation of .S and R* on com-
mon input x, where .S has private input v. (Recall the definition of computational indistin-
guishability in section[26]of lecture notes 10.)

Unambiguity For all but a negligible fraction of the receiver’s local coins r, there is no sequence
of sender messages 7 for which the receiver’s view (r, m) is ambiguous.

In the reveal phase, the sender opens the commitment (r,m) by revealing the secret bit v and the
sequence s of local coins that it used during the commit phase. Upon receiving (v, s), the receiver
re-executes the joint computation of the commit phase, simulating S(v) using local coins s, and
simulating R with local coins r. It then checks that the sequence of messages m' sent by S in the
simulation matches the sequence m from the commitment and accepts iff they agree.

48.1 Commitment based on a one-way permutation

Let f: {0,1}* — {0,1}* be a one-way permutation, and let b : {0,1}* — {0,1} be a hard core
predicate for f. A commitment scheme is easily derived from f and b.

Commit phase Let 1" be the common input and v the sender’s private input. The sender chooses
a uniformly distributed binary string s of length n and sends a single message m = Cs(v) =
(f(s),b(s) @ v) to the receiver. The receiver does nothing during the commit phase (and
hence uses no local coins). The sender’s commitment to v is just m.

Reveal phase To open m, the sender sends the pair (v, s). The receiver checks that m = C(v).

Unambiguity is immediate since f is a permutation. Hence, if m = (y,7) for some string y
and 7 € {0, 1}, then m is a commitment only to the value v = b(s) © 7, where s = f~(y) is the
unique inverse of y under f.

Secrecy follows from the fact that b is a hard-core predicate for f. Here’s a sketch of the proof
of secrecy.

Suppose some probabilistic polynomial-time algorithm D(m) is able to distinguish commit-
ments to 0 from commitments to 1 with non-negligible probability €(n). Formally

[PrID(f(Un), b(Un) @ 1) = 1] = Pr[D(f (Un), b(Un)) = 1]| = €(n),

where U,, is a uniformly distributed random variable over {0, 1}"™. Without loss of generality, we
may assume that the output of D is either 0 or 1, and we may drop the absolute value brackets and
assume that

Pr[D(f(Un)’ b(Un) D 1) = 1] - Pr[D(f(Un)’ b(Un)) = 1] 2 e(n)

We construct an algorithm A’ that on input y = f(s) correctly outputs b(s) with non-negligible
advantage €' (n) over random guessing. Formally,

PrLA(f(Un) = b(U)] 2 5 + €(n)


http://zoo.cs.yale.edu/classes/cs461/2009/attach/ln10.html#x1-400026
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A'(y) chooses 7 € {0, 1} uniformly at random, constructs m = (y, 7), computes o = D(m) and
outputs o & 7.

From the proof of unambiguity above, m = (y,7) is a commitment to v = 7 & b(s), where
s = f~!(y). Hence, b(s) = 7 @ v. Thus, if m is a commitment to v and D(m) outputs v, then
A’(y) correctly outputs b(s). Moreover, because 7 is chosen at random, m is equally likely to be a
commitment to 0 or a commitment to 1.

We leave to the reader the task of showing that A’(f(s)) has an €(n) advantage at guessing
b(s) for some non-negligible function €’(n). This contradicts the assumption that b is hard-core
for f. Hence, the assumed distinguisher DD does not exist and the commit phase satisfies the secrecy
condition.

48.2 Commitment based on a pseudorandom generator

Although the commitment scheme of section [48.1] is simple, it assumes the existence of one-way
permutations. This is a possibly stronger assumption than the existence of one-way functions, for the
problem of constructing a one-way permutation assuming only the existence of one-way functions
is still open. However, it is known that pseudorandom generators can be constructed assuming
only the existence of one-way functions. We now construct a bit-commitment scheme based on a
pseudorandom generator, showing that commitment schemes exist if one-way functions exist.

Let G(s) be a pseudorandom generator with expansion factor £(n) = 3n. (See section [29| of
lecture notes 12/)

Commit phase Let 1" be the common input and v the sender’s private input. The receiver chooses
r € {0, 1}3" uniformly at random and sends r to the sender. The sender chooses s € {0, 1}"
uniformly at random, computes

[ G(s) ifo=0
= Gs)®r ifv=1

and sends m to the receiver. The sender’s commitment to v is the receiver view (r,m).

Reveal phase To open (r,m), the sender sends the pair (v, s). The receiver checks that either v = 0
andm = G(s)orv=1andm = G(s) D r.

The proof of the secrecy condition is another reducibility argument. Assuming there is a distin-
guisher between commitments to 0 and commitments to 1, one constructs a distinguisher between
G(U,,) and Us,,, contradicting the assumption that G is a pseudorandom generator. Details are in
the textbook.

The proof of unambiguity is more interesting. This commitment scheme does not have perfect
unambiguity. For example, if » = 0, then the receiver view (7, G(s)) is a commitment to both 0
and 1. More generally, if there exist sg, s1 such that G(sg) = G(s1) @ r, then the receiver view
(r,G(s0)) = (r,G(s1) @ r) is ambiguous. Otherwise, (r,m) is unambiguous for all receiver views
(r,m).

Call a value 7 bad if 1 = G(so) ® G(s1) for some sg,s; and good otherwise. There are
(27)% = 227 pairs (so, s1), where sg,s1 € {0,1}", and each of them gives rise to one bad value
r = G(s0) @ G(s1). All of the other 23" possible values for 7 are good. Hence, the probability of
the receiver choosing a bad r is exponentially small — only 22" /23" = 1/2", which is a negligible
function.
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