Lecture Notes 19

47 A Zero-Knowledge Interactive Proof for Graph 3-Coloring

The goal of the next couple of lectures is to show that every language in \mathcal{NP} has a zero knowledge interactive proof. We begin with the graph 3-colorability problem.

47.1 Graph 3-colorability

Definition: Let $G = (V, E)$ be a simple graph. A 3-coloring of G is a function $\psi : V \rightarrow \{1, 2, 3\}$ such that for all $(u, v) \in E$, $\psi(u) \neq \psi(v)$.

That is, each node is labeled with one of three colors such that no edge connects two nodes of the same color.

Definition: A graph G is 3-colorable if there is a 3-coloring of G. The language $G3C$ is the set of 3-colorable graphs.

Fact $G3C$ is \mathcal{NP}-complete.

47.2 The protocol

The protocol makes use of a commitment scheme. For now, assume a family of functions $\{C_s | s \in \{0, 1\}^n\}_{n \in \mathbb{N}}$, where $C_s(\sigma) \in \{0, 1\}^*$ for each $s \in \{0, 1\}^n$ and $\sigma \in \{1, 2, 3\}$. $C_s(\sigma)$ is said to be the commitment of the sender using coins s to the value σ. $C_s(\sigma)$ can be computed in polynomial time given s and σ. We desire that the commitment scheme satisfy two properties:

- **Secrecy** The commitment $C_s(\sigma)$ to σ reveals a negligible amount of information about σ. In other words, the receiver of the commitment cannot distinguish commitments to any of the three colors with non-negligible advantage over random guessing.

- **Unambiguity** If $C_s(\sigma) = C_{s'}(\sigma')$, then $\sigma' = \sigma$. In other words, given a string c, there is at most one σ for which it is a valid commitment.

Formal properties and construction of more general commitment schemes are given in section 48.

The interactive proof for $G3C$ is given in Figure 47.1.

Explanation. In step 1 of Figure 47.1, the prover randomly permutes the colors in the 3-coloring ψ to produce a new 3-coloring ϕ of G. It commits to each color $\phi(v)$ for $v \in V$ with the commitment sequence \bar{c} and sends \bar{c}. The verifier checks that ϕ is a 3-coloring by asking the prover to reveal the colors at the two endpoints of a randomly chosen edge (u, v). The prover does so in step 3. In step 4, the verifier checks that the colors at u and v were revealed correctly and that they are different.

If both P and V follow this protocol, V always accepts, establishing completeness. If G is not 3-colorable, then any 3-coloring ϕ committed to by a cheating prover P^* in step 1 will have at least
Common input: Simple graph $G = (V, E)$, where $V = \{1, \ldots, n\}$.

<table>
<thead>
<tr>
<th>Prover P</th>
<th>Verifier V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private input: 3-coloring ψ of G.</td>
<td></td>
</tr>
<tr>
<td>1. Random permutation π over ${1, 2, 3}$. $\phi = \pi \circ \psi$ is also 3-coloring of G.</td>
<td></td>
</tr>
<tr>
<td>Random $s_1, \ldots, s_n \in {0, 1}^n$. Compute $c_i = C_{s_i}(\phi(v)) \forall v \in V$. $\bar{c} = (c_1, \ldots, c_n)$. \bar{c}</td>
<td></td>
</tr>
<tr>
<td>2. $\overset{(u,v)}{\leftarrow}$ Random $(u, v) \in E$.</td>
<td></td>
</tr>
<tr>
<td>3. $r_u = (s_u, \phi(u)), r_v = (s_v, \phi(v))$.</td>
<td></td>
</tr>
<tr>
<td>4. Let $\hat{s}_u, \hat{\sigma}_u = r_u$. Let $\hat{s}_v, \hat{\sigma}v = r_v$. Check $c_u = C{\hat{s}_u}(\hat{\sigma}u)$. Check $c_v = C{\hat{s}_v}(\hat{\sigma}_v)$. Check $\hat{\sigma}_u \neq \hat{\sigma}_v$. Accept iff all checks succeed.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 47.1: Interactive proof for graph 3-colorability.

one edge whose endpoints are colored the same. With probability $1/|E|$, V chooses this edge in step 2. Whatever values P^* sends in step 3 will fail V’s one of V’s checks, either on correctly opening c_u or c_v, or it will finds that u and v are colored the same. Hence, V will reject with probability at least $1/|V|$.

The construction of the simulator M^* to show that this protocol is zero knowledge is deferred to the next lecture.

48 Bit-Commitment Schemes

A bit-commitment scheme is a pair of probabilistic polynomial-time interactive Turing machines (S, R) called the sender and receiver, respectively. The common input is a security parameter 1^n. The sender’s private input is a bit v. The sender’s commitment to v is the receiver’s view (r, \bar{m}) of its interaction with S, where r is the receiver’s random coins and \bar{m} is the sequence of messages received from S.

Fix n and let $\sigma \in \{0, 1\}$. We say a receiver view (r, \bar{m}) is a possible σ-commitment if, for some string s, \bar{m} describes the messages received by R when R uses local coins r, S uses local coins s, and S has private input σ. The view is ambiguous if it is both a possible 0-commitment and a possible 1-commitment.

Here are the requirements for the commit phase of a bit-commitment scheme:

Input specification The common input is a security parameter 1^n. The sender’s private input is a bit v.

Secrecy For all probabilistic polynomial-time interactive Turing machines R^* interacting with S,
the probability ensembles
\[\{(S(0), R^*)(1^n)\}_{n \in \mathbb{N}} \quad \text{and} \quad \{(S(1), R^*)(1^n)\}_{n \in \mathbb{N}}\]

are computationally indistinguishable. The notation \(S(v), R^*(x)\) as used here means the random variable describing the receiver’s view in a joint computation of \(S\) and \(R^*\) on common input \(x\), where \(S\) has private input \(v\). (Recall the definition of computational indistinguishability in section 26 of lecture notes 10.)

Unambuguity For all but a negligible fraction of the receiver’s local coins \(r\), there is no sequence of sender messages \(\tilde{m}\) for which the receiver’s view \((r, \tilde{m})\) is ambiguous.

In the **reveal phase**, the sender opens the commitment \((r, \tilde{m})\) by revealing the secret bit \(v\) and the sequence \(s\) of local coins that it used during the commit phase. Upon receiving \((v, s)\), the receiver re-executes the joint computation of the commit phase, simulating \(S(v)\) using local coins \(s\), and simulating \(R\) with local coins \(r\). It then checks that the sequence of messages \(\tilde{m}'\) sent by \(S\) in the simulation matches the sequence \(\tilde{m}\) from the commitment and accepts iff they agree.

48.1 Commitment based on a one-way permutation

Let \(f : \{0, 1\}^* \to \{0, 1\}^*\) be a one-way permutation, and let \(b : \{0, 1\}^* \to \{0, 1\}\) be a hard core predicate for \(f\). A commitment scheme is easily derived from \(f\) and \(b\).

Commit phase Let \(1^n\) be the common input and \(v\) the sender’s private input. The sender chooses a uniformly distributed binary string \(s\) of length \(n\) and sends a single message \(m = C_s(v) = (f(s), b(s) \oplus v)\) to the receiver. The receiver does nothing during the commit phase (and hence uses no local coins). The sender’s commitment to \(v\) is just \(m\).

Reveal phase To open \(m\), the sender sends the pair \((v, s)\). The receiver checks that \(m = C_s(v)\).

Unambiguity is immediate since \(f\) is a permutation. Hence, if \(m = (y, \tau)\) for some string \(y\) and \(\tau \in \{0, 1\}\), then \(m\) is a commitment only to the value \(v = b(s) \oplus \tau\), where \(s = f^{-1}(y)\) is the unique inverse of \(y\) under \(f\).

Secrecy follows from the fact that \(b\) is a hard-core predicate for \(f\). Here’s a sketch of the proof of secrecy.

Suppose some probabilistic polynomial-time algorithm \(D(m)\) is able to distinguish commitments to 0 from commitments to 1 with non-negligible probability \(\epsilon(n)\). Formally

\[|\Pr[D(f(U_n), b(U_n) \oplus 1) = 1] - \Pr[D(f(U_n), b(U_n)) = 1]| \geq \epsilon(n),\]

where \(U_n\) is a uniformly distributed random variable over \(\{0, 1\}^n\). Without loss of generality, we may assume that the output of \(D\) is either 0 or 1, and we may drop the absolute value brackets and assume that

\[\Pr[D(f(U_n), b(U_n) \oplus 1) = 1] - \Pr[D(f(U_n), b(U_n)) = 1] \geq \epsilon(n).\]

We construct an algorithm \(A'\) that on input \(y = f(s)\) correctly outputs \(b(s)\) with non-negligible advantage \(\epsilon'(n)\) over random guessing. Formally,

\[\Pr[A'(f(U_n)) = b(U_n)] \geq \frac{1}{2} + \epsilon'(n)\]
$A'(y)$ chooses $\tau \in \{0, 1\}$ uniformly at random, constructs $m = (y, \tau)$, computes $\sigma = D(m)$ and outputs $\sigma \oplus \tau$.

From the proof of unambiguity above, $m = (y, \tau)$ is a commitment to $v = \tau \oplus b(s)$, where $s = f^{-1}(y)$. Hence, $b(s) = \tau \oplus v$. Thus, if m is a commitment to v and $D(m)$ outputs v, then $A'(y)$ correctly outputs $b(s)$. Moreover, because τ is chosen at random, m is equally likely to be a commitment to 0 or a commitment to 1.

We leave to the reader the task of showing that $A'(f(s))$ has an $e'(n)$ advantage at guessing $b(s)$ for some non-negligible function $e'(n)$. This contradicts the assumption that b is hard-core for f. Hence, the assumed distinguisher D does not exist and the commit phase satisfies the secrecy condition.

48.2 Commitment based on a pseudorandom generator

Although the commitment scheme of section 48.1 is simple, it assumes the existence of one-way permutations. This is a possibly stronger assumption than the existence of one-way functions, for the problem of constructing a one-way permutation assuming only the existence of one-way functions is still open. However, it is known that pseudorandom generators can be constructed assuming only the existence of one-way functions. We now construct a bit-commitment scheme based on a pseudorandom generator, showing that commitment schemes exist if one-way functions exist.

Let $G(s)$ be a pseudorandom generator with expansion factor $\ell(n) = 3n$. (See section 29 of lecture notes 12)

Commit phase Let 1^n be the common input and v the sender’s private input. The receiver chooses $r \in \{0, 1\}^{3n}$ uniformly at random and sends r to the sender. The sender chooses $s \in \{0, 1\}^n$ uniformly at random, computes

$$m = \begin{cases} G(s) & \text{if } v = 0 \\ G(s) \oplus r & \text{if } v = 1 \end{cases}$$

and sends m to the receiver. The sender’s commitment to v is the receiver view (r, m).

Reveal phase To open (r, m), the sender sends the pair (v, s). The receiver checks that either $v = 0$ and $m = G(s)$ or $v = 1$ and $m = G(s) \oplus r$.

The proof of the secrecy condition is another reducibility argument. Assuming there is a distinguisher between commitments to 0 and commitments to 1, one constructs a distinguisher between $G(U_n)$ and U_{3n}, contradicting the assumption that G is a pseudorandom generator. Details are in the textbook.

The proof of unambiguity is more interesting. This commitment scheme does not have perfect unambiguity. For example, if $r = 0$, then the receiver view $(r, G(s))$ is a commitment to both 0 and 1. More generally, if there exist s_0, s_1 such that $G(s_0) = G(s_1) \oplus r$, then the receiver view $(r, G(s_0)) = (r, G(s_1) \oplus r)$ is ambiguous. Otherwise, (r, m) is unambiguous for all receiver views (r, m).

Call a value r bad if $r = G(s_0) \oplus G(s_1)$ for some s_0, s_1 and good otherwise. There are $(2^n)^2 = 2^{2n}$ pairs (s_0, s_1), where $s_0, s_1 \in \{0, 1\}^n$, and each of them gives rise to one bad value $r = G(s_0) \oplus G(s_1)$. All of the other 2^{3n} possible values for r are good. Hence, the probability of the receiver choosing a bad r is exponentially small – only $2^{2n}/2^{3n} = 1/2^n$, which is a negligible function.