YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPSC 461b: Foundations of Cryptography

Lecture Notes 19

47 A Zero-Knowledge Interactive Proof for Graph 3-Coloring

The goal of the next couple of lectures is to show that every language in \mathcal{NP} has a zero knowledge interactive proof. We begin with the graph 3-colorability problem.

47.1 Graph 3-colorability

Definition: Let G = (V, E) be a simple graph. A 3-coloring of G is a function $\psi : V \to \{1, 2, 3\}$ such that for all $(u, v) \in E$, $\psi(u) \neq \psi(v)$.

That is, each node is labeled with one of three colors such that no edge connects two nodes of the same color.

Definition: A graph G is *3-colorable* if there is a 3-coloring of G. The language G3C is the set of 3-colorable graphs.

Fact G3C is \mathcal{NP} -complete.

47.2 The protocol

The protocol makes use of a commitment scheme. For now, assume a family of functions $\{C_s \mid s \in \{0,1\}^n\}_{n \in \mathbb{N}}$, where $C_s(\sigma) \in \{0,1\}^*$ for each $s \in \{0,1\}^n$ and $\sigma \in \{1,2,3\}$. $C_s(\sigma)$ is said to be the *commitment* of the sender using coins s to the value σ . $C_s(\sigma)$ can be computed in polynomial time given s and σ . We desire that the commitment scheme satisfy two properties:

- Secrecy The commitment $C_s(\sigma)$ to σ reveals a negligible amount of information about σ . In other words, the receiver of the commitment cannot distinguish commitments to any of the three colors with non-negligible advantage over random guessing.
- **Unambiguity** If $C_s(\sigma) = C_{s'}(\sigma')$, then $\sigma' = \sigma$. In other words, given a string c, there is at most one σ for which it is a valid commitment.

Formal properties and construction of more general commitment schemes are given in section 48. The interactive proof for G3C is given in Figure 47.1.

Explanation. In step 1 of Figure 47.1, the prover randomly permutes the colors in the 3-coloring ψ to produce a new 3-coloring ϕ of G. It commits to each color $\phi(v)$ for $v \in V$ with the commitment sequence \bar{c} and sends \bar{c} . The verifier checks that ϕ is a 3-coloring by asking the prover to reveal the colors at the two endpoints of a randomly chosen edge (u, v). The prover does so in step 3. In step 4, the verifier checks that the colors at u and v were revealed correctly and that they are different.

If both P and V follow this protocol, V always accepts, establishing completeness. If G is not 3-colorable, then any 3-coloring ϕ committed to by a cheating prover P^* in step 1 will have at least

Verifier V

Common input: Simple graph G = (V, E), where $V = \{1, ..., n\}$.

Prover P

Private input: 3-coloring ψ of G.

1. Random permutation π over $\{1, 2, 3\}$. $\phi = \pi \circ \psi$ is also 3-coloring of G. Random $s_1, \ldots, s_n \in \{0, 1\}^n$. Compute $c_i = C_{s_v}(\phi(v)) \ \forall v \in V$. $\bar{c} = (c_1, \ldots, c_n)$.

- 3. $r_u = (s_u, \phi(u)), r_v = (s_v, \phi(v)).$
- 4.

Let
$$(\hat{s}_u, \hat{\sigma}_u) = r_u$$
.
Let $(\hat{s}_v, \hat{\sigma}_v) = r_v$.
Check $c_u = C_{\hat{s}_u}(\hat{\sigma}_u)$.
Check $c_v = C_{\hat{s}_v}(\hat{\sigma}_v)$.
Check $\hat{\sigma}_u \neq \hat{\sigma}_v$.
Accept iff all checks succeed.

Random $(u, v) \in E$.

Figure 47.1: Interactive proof for graph 3-colorability.

 \bar{c}

(u,v)

 (r_u, r_v)

one edge whose endpoints are colored the same. With probability 1/|E|, V chooses this edge in step 2. Whatever values P^* sends in step 3 will fail V's one of V's checks, either on correctly opening c_u or c_v , or it will finds that u and v are colored the same. Hence, V will reject with probability at least 1/|V|.

The construction of the simulator M^* to show that this protocol is zero knowledge is deferred to the next lecture.

48 Bit-Commitment Schemes

A bit-commitment scheme is a pair of probabilistic polynomial-time interactive Turing machines (S, R) called the *sender* and *receiver*, respectively. The common input is a security parameter 1^n . The sender's private input is a bit v. The sender's *commitment* to v is the receiver's view (r, \bar{m}) of its interaction with S, where r is the receiver's random coins and \bar{m} is the sequence of messages received from S.

Fix n and let $\sigma \in \{0, 1\}$. We say a receiver view (r, \bar{m}) is a *possible* σ -commitment if, for some string s, \bar{m} describes the messages received by R when R uses local coins r, S uses local coins s, and S has private input σ . The view is *ambiguous* if it is both a possible 0-commitment and a possible 1-commitment.

Here are the requirements for the *commit phase* of a bit-commitment scheme:

Input specification The common input is a security parameter 1^n . The sender's private input is a bit v.

Secrecy For all probabilistic polynomial-time interactive Turing machines R^* interacting with S,

the probability ensembles

$$\{\langle S(0), R^* \rangle(1^n)\}_{n \in \mathbb{N}}$$
 and $\{\langle S(1), R^* \rangle(1^n)\}_{n \in \mathbb{N}}$

are computationally indistinguishable. The notation $\langle S(v), R^* \rangle(x)$ as used here means the random variable describing the receiver's view in a joint computation of S and R^* on common input x, where S has private input v. (Recall the definition of computational indistinguishability in section 26 of lecture notes 10.)

Unambiguity For all but a negligible fraction of the receiver's local coins r, there is no sequence of sender messages \bar{m} for which the receiver's view (r, \bar{m}) is ambiguous.

In the reveal phase, the sender opens the commitment (r, \bar{m}) by revealing the secret bit v and the sequence s of local coins that it used during the commit phase. Upon receiving (v, s), the receiver re-executes the joint computation of the commit phase, simulating S(v) using local coins s, and simulating R with local coins r. It then checks that the sequence of messages \bar{m}' sent by S in the simulation matches the sequence \bar{m} from the commitment and accepts iff they agree.

48.1 Commitment based on a one-way permutation

Let $f : \{0,1\}^* \to \{0,1\}^*$ be a one-way permutation, and let $b : \{0,1\}^* \to \{0,1\}$ be a hard core predicate for f. A commitment scheme is easily derived from f and b.

Commit phase Let 1^n be the common input and v the sender's private input. The sender chooses a uniformly distributed binary string s of length n and sends a single message $m = C_s(v) = (f(s), b(s) \oplus v)$ to the receiver. The receiver does nothing during the commit phase (and hence uses no local coins). The sender's commitment to v is just m.

Reveal phase To open m, the sender sends the pair (v, s). The receiver checks that $m = C_s(v)$.

Unambiguity is immediate since f is a permutation. Hence, if $m = (y, \tau)$ for some string y and $\tau \in \{0, 1\}$, then m is a commitment only to the value $v = b(s) \oplus \tau$, where $s = f^{-1}(y)$ is the unique inverse of y under f.

Secrecy follows from the fact that b is a hard-core predicate for f. Here's a sketch of the proof of secrecy.

Suppose some probabilistic polynomial-time algorithm D(m) is able to distinguish commitments to 0 from commitments to 1 with non-negligible probability $\epsilon(n)$. Formally

$$|\Pr[D(f(U_n), b(U_n) \oplus 1) = 1] - \Pr[D(f(U_n), b(U_n)) = 1]| \ge \epsilon(n),$$

where U_n is a uniformly distributed random variable over $\{0,1\}^n$. Without loss of generality, we may assume that the output of D is either 0 or 1, and we may drop the absolute value brackets and assume that

$$\Pr[D(f(U_n), b(U_n) \oplus 1) = 1] - \Pr[D(f(U_n), b(U_n)) = 1] \ge \epsilon(n).$$

We construct an algorithm A' that on input y = f(s) correctly outputs b(s) with non-negligible advantage $\epsilon'(n)$ over random guessing. Formally,

$$\Pr[A'(f(U_n)) = b(U_n)] \ge \frac{1}{2} + \epsilon'(n)$$

A'(y) chooses $\tau \in \{0,1\}$ uniformly at random, constructs $m = (y, \tau)$, computes $\sigma = D(m)$ and outputs $\sigma \oplus \tau$.

From the proof of unambiguity above, $m = (y, \tau)$ is a commitment to $v = \tau \oplus b(s)$, where $s = f^{-1}(y)$. Hence, $b(s) = \tau \oplus v$. Thus, if m is a commitment to v and D(m) outputs v, then A'(y) correctly outputs b(s). Moreover, because τ is chosen at random, m is equally likely to be a commitment to 0 or a commitment to 1.

We leave to the reader the task of showing that A'(f(s)) has an $\epsilon'(n)$ advantage at guessing b(s) for some non-negligible function $\epsilon'(n)$. This contradicts the assumption that b is hard-core for f. Hence, the assumed distinguisher D does not exist and the commit phase satisfies the secrecy condition.

48.2 Commitment based on a pseudorandom generator

Although the commitment scheme of section 48.1 is simple, it assumes the existence of one-way permutations. This is a possibly stronger assumption than the existence of one-way functions, for the problem of constructing a one-way permutation assuming only the existence of one-way functions is still open. However, it is known that pseudorandom generators can be constructed assuming only the existence of one-way functions. We now construct a bit-commitment scheme based on a pseudorandom generator, showing that commitment schemes exist if one-way functions exist.

Let G(s) be a pseudorandom generator with expansion factor $\ell(n) = 3n$. (See section 29 of lecture notes 12.)

Commit phase Let 1^n be the common input and v the sender's private input. The receiver chooses $r \in \{0, 1\}^{3n}$ uniformly at random and sends r to the sender. The sender chooses $s \in \{0, 1\}^n$ uniformly at random, computes

$$m = \begin{cases} G(s) & \text{if } v = 0\\ G(s) \oplus r & \text{if } v = 1 \end{cases}$$

and sends m to the receiver. The sender's commitment to v is the receiver view (r, m).

Reveal phase To open (r, m), the sender sends the pair (v, s). The receiver checks that either v = 0 and m = G(s) or v = 1 and $m = G(s) \oplus r$.

The proof of the secrecy condition is another reducibility argument. Assuming there is a distinguisher between commitments to 0 and commitments to 1, one constructs a distinguisher between $G(U_n)$ and U_{3n} , contradicting the assumption that G is a pseudorandom generator. Details are in the textbook.

The proof of unambiguity is more interesting. This commitment scheme does not have perfect unambiguity. For example, if r = 0, then the receiver view (r, G(s)) is a commitment to both 0 and 1. More generally, if there exist s_0, s_1 such that $G(s_0) = G(s_1) \oplus r$, then the receiver view $(r, G(s_0)) = (r, G(s_1) \oplus r)$ is ambiguous. Otherwise, (r, m) is unambiguous for all receiver views (r, m).

Call a value r bad if $r = G(s_0) \oplus G(s_1)$ for some s_0, s_1 and good otherwise. There are $(2^n)^2 = 2^{2n}$ pairs (s_0, s_1) , where $s_0, s_1 \in \{0, 1\}^n$, and each of them gives rise to one bad value $r = G(s_0) \oplus G(s_1)$. All of the other 2^{3n} possible values for r are good. Hence, the probability of the receiver choosing a bad r is exponentially small – only $2^{2n}/2^{3n} = 1/2^n$, which is a negligible function.