Solutions to Problem Set 3

In the problems below, “textbook” refers to *Introduction to Cryptography with Coding Theory: Second Edition* by Trappe and Washington.

Problem 11: Euclidean Algorithm

Textbook, problem 3.13.4.

Solution:

part a

\[
gcd(30030, 257) = gcd(257, 218) \\
= gcd(218, 39) \\
= gcd(39, 23) \\
= gcd(23, 16) \\
= gcd(16, 7) \\
= gcd(7, 2) \\
= 1
\]

part b

The fact that \(gcd(30030, 257) = 1\) and \(30030 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13\) tells us that none of the factors of 30030 are factors of 257. The next prime is 17, but \(17^2 = 289\) that is bigger than 257 so if 257 is composite it has to have a prime factor smaller or equal to 17 but, as said, none of the primes smaller that 17 are factors; therefore 257 must be prime.

Problem 12: Divisibility

Textbook, problem 3.13.7.

Solution:

part a

If \(ab \equiv 0 \pmod{p}\) then \(p|ab\). Because \(p\) is prime then either \(p|a\) or \(p|b\) (or both). Therefore either \(a \equiv 0 \pmod{p}\) or \(b \equiv 0 \pmod{p}\) (or both).

part b

The intuition is that if \(gcd(n, a) = 1\) and \(n|ab\) all the prime factors of \(n\) have to be in \(b\) since none are in \(a\). Formally if \(gcd(n, a) = 1\) then we can find \(u\) and \(v\) s.t. \(1 = n \cdot u + a \cdot v\). Multiplying both sides by \(b\) we get that \(b = b \cdot n \cdot u + b \cdot a \cdot v\). Because \(n|n\) and \(n|ab\) then \(n|b\).
Problem 13: RSA Encryption

Solution:

First we will find d s.t. $ed \equiv 1 \pmod{\phi(n)}$. $\phi(n) = 100 \cdot 112 = 11200$. Using the extended Euclid’s algorithm:

\[
\begin{align*}
gcd(e, \phi(n)) &= u \cdot e + v \cdot \phi(n) \\
11200 &= 0 \cdot 7467 + 1 \cdot 11200 \\
7467 &= 1 \cdot 7467 + 0 \cdot 11200 \quad q_1 = 1 \\
3733 &= -1 \cdot 7467 + 1 \cdot 11200 \quad q_2 = 2 \\
1 &= 3 \cdot 7467 - 2 \cdot 11200
\end{align*}
\]

so $d = 3$. Now we need to compute $m^d \equiv 5859^3 \equiv 1415 \pmod{11413}$.

Problem 14: RSA Chosen Ciphertext Attack

Textbook, problem 6.8.7.

Solution:

\[(2^e c)^d \equiv 2^{ed} c^d \equiv 2^d \equiv 2m \pmod{n} \]. So whatever Bob sends back just needs to be multiplied by $2^{-1} \pmod{n}$ to reveal m.

Problem 15: Factoring by the $p - 1$ Method

Write a computer program to factor numbers using the $p - 1$ method, described in §6.4 of the textbook. Your program should be written in C, C++, or Java and should use one of the big number libraries—gmp (if written in C), gmp or ln3 (if written in C++), or class BigInteger in java.math (if written in Java). Use your program to solve the following:

(a) Textbook, problem 6.9.4.

(b) Textbook, problem 6.9.5.

Note: The downloadable computer files referenced in the textbook are for Maple, Mathematica, and Matlab, which we are not using in this course. However, I have typed the numbers to be factored for this problem into files prob15a.dat and prob15b.dat and put them on the Zoo in the folder /c/cs467/course/assignments/ps3. This will save you the trouble of copying them from the textbook and the aggravation of having your programs fail because of a data input error.

Solution:

The program implementing the $p - 1$ method is given in Figure[1]. Using it, we obtain the answers to the two parts:

part a

\[618240007109027021 = 250387201 \times 2469135821. \]
part b

8834884587090814646372459890377418962766907
= 36443898216827965440001 \times 242424242468686907

Program p15.java

```java
import java.math.BigInteger;

public class p15 {
    public static BigInteger pm1factor(BigInteger n) {
        BigInteger a = new BigInteger("2");
        int bound = 2000;
        BigInteger bigi;
        BigInteger b = a.mod(n);
        for (int i = 1; i <= bound; i++) {
            bigi = new BigInteger(i + "");
            b = b.modPow(bigi, n);
        }
        return b.subtract(BigInteger.ONE).gcd(n);
    }

    static void partA() {
        BigInteger n = new BigInteger("618240007109027021");
        factor(n);
    }

    static void partB() {
        BigInteger n = new BigInteger("8834884587090814646372459890377418962766907");
        factor(n);
    }

    static void factor(BigInteger n) {
        BigInteger f1 = pm1factor(n);
        if (f1.equals(BigInteger.ONE) || f1.equals(n))
            return;
        BigInteger f2 = n.divide(f1);
        System.out.println(f1);
        System.out.println(f2);
        factor(f1);
        factor(f2);
    }

    public static void main(String[] args) {
        partA();
        partB();
    }
}
```

Figure 1: Code for solving Problem 15