Pseudorandom Sequence Generation

1 Distinguishability and Bit Prediction

Let D be a probability distribution on a finite set Ω. Then D associates a probability $P_D(\omega)$ with each each element $\omega \in \Omega$. We will also regard D as a random variable that ranges over Ω and assumes value $\omega \in \Omega$ with probability $P_D(\omega)$.

Definition: An (S, ℓ)-pseudorandom sequence generator (PRSG) is a function $f: S \rightarrow \{0, 1\}^\ell$. (We generally assume $2^\ell \gg |S|$.) More properly speaking, a PRSG is a randomness amplifier. Given a random, uniformly distributed seed $s \in S$, the PRSG yields the pseudorandom sequence $z = f(s)$. We use S also to denote the uniform distribution on seeds, and we denote the induced probability distribution on pseudorandom sequences by $f(S)$.

The goal of an (S, ℓ)-PRSG is to generate sequences that “look random”, that is, are computationally indistinguishable from sequences drawn from the uniform distribution U on length-ℓ sequences. Informally, a probabilistic algorithm A that always halts “distinguishes” X from Y if its output distribution is “noticeably differently” depending whether its input is drawn at random from X or from Y. Formally, there are many different kinds of distinguishably. In the following definition, the only aspect of A’s behavior that matters is whether or not it outputs “1”.

Definition: Let $\epsilon > 0$, let X, Y be distributions on $\{0, 1\}^\ell$, and let A be a probabilistic algorithm. Algorithm A naturally induces probability distributions $A(X)$ and $A(Y)$ on the set of possible outcomes of A. We say that $A \epsilon$-distinguishes X and Y if

$$|\text{prob}[A(X) = 1] - \text{prob}[A(Y) = 1]| \geq \epsilon,$$

and we say X and Y are ϵ-indistinguishable by A if A does not distinguish them.

A natural notion of randomness for PRSG’s is that the next bit should be unpredictable given all of the bits that have been generated so far.

Definition: Let $\epsilon > 0$ and $1 \leq i \leq \ell$. A probabilistic algorithm N_i is an ϵ-next bit predictor for bit i of f if

$$\text{prob}[N_i(Z_1, \ldots, Z_{i-1}) = Z_i] \geq \frac{1}{2} + \epsilon$$

where (Z_1, \ldots, Z_ℓ) is distributed according to $f(S)$.

A still stronger notion of randomness for PRSG’s is that each bit i should be unpredictable, even if one is given all of the bits in the sequence except for bit i.

Definition: Let $\epsilon > 0$ and $1 \leq i \leq \ell$. A probabilistic algorithm B_i is an ϵ-strong bit predictor for bit i of f if

$$\text{prob}[B_i(Z_1, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_\ell) = Z_i] \geq \frac{1}{2} + \epsilon$$

where (Z_1, \ldots, Z_ℓ) is distributed according to $f(S)$.
The close relationship between distinguishability and the two kinds of bit prediction is established in the following theorems.

Theorem 1 Suppose $\epsilon > 0$ and N_i is an ϵ-next bit predictor for bit i of f. Then algorithm B_i is an ϵ-strong bit predictor for bit i of f, where algorithm $B_i(z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_\ell)$ simply ignores its last $\ell - i$ inputs and computes $N_i(z_1, \ldots, z_{i-1})$.

Proof: Obvious from the definitions. \blacksquare

Let $x = (x_1, \ldots, x_\ell)$ be a vector. We define x^i to be the result of deleting the i^{th} element of x, that is, $x^i = (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_\ell)$.

Theorem 2 Suppose $\epsilon > 0$ and B_i is an ϵ-strong bit predictor for bit i of f. Then algorithm A ϵ-distinguishes $f(S)$ and U, where algorithm A on input x outputs 1 if $B_i(x^i) = x_i$ and outputs 0 otherwise.

Proof: By definition of A, $A(x) = 1$ precisely when $B_i(x^i) = x_i$. Hence, $\text{prob}[A(f(S)) = 1] \geq \frac{1}{2} + \epsilon$. On the other hand, for $r = U$, $\text{prob}[B_i(r^i) = r_i] = \frac{1}{2}$ since r_i is a uniformly distributed bivalued random variable that is independent of r^i. Thus, $\text{prob}[A(U) = 1] = \frac{1}{2}$, so A ϵ-distinguishes $f(S)$ and U. \blacksquare

For the final step in the 3-way equivalence, we have to weaken the error bound.

Theorem 3 Suppose $\epsilon > 0$ and algorithm A ϵ-distinguishes $f(S)$ and U. For each $1 \leq i \leq \ell$ and $c \in \{0, 1\}$, define algorithm $N^c_i(z_1, \ldots, z_{i-1})$ as follows:

1. Flip coins to generate $\ell - i + 1$ random bits r_i, \ldots, r_ℓ.
2. Let $v = \begin{cases} 1 & \text{if } A(z_1, \ldots, z_{i-1}, r_i, \ldots, r_\ell) = 1; \\ 0 & \text{otherwise}. \end{cases}$
3. Output $v \oplus r_i \oplus c$.

Then there exist m and c for which algorithm N^c_m is an ϵ/ℓ-next bit predictor for bit m of f.

Proof: Let $(Z_1, \ldots, Z_\ell) = f(S)$ and $(R_1, \ldots, R_\ell) = U$ be random variables, and let $D_i = (Z_1, \ldots, Z_i, R_{i+1}, \ldots, R_\ell)$. D_i is the distribution on ℓ-bit sequences that results from choosing the first i bits according to $f(S)$ and choosing the last $\ell - i$ bits uniformly. Clearly $D_0 = U$ and $D_\ell = f(S)$.

Let $p_i = \text{prob}[A(D_i) = 1], 0 \leq i \leq \ell$. Since A ϵ-distinguishes D_ℓ and D_0, we have $|p_\ell - p_0| \geq \epsilon$. Hence, there exists m, $1 \leq m \leq \ell$, such that $|p_m - p_{m-1}| \geq \epsilon/\ell$. We show that the probability that N^c_m correctly predicts bit m for f is $1/2 + (p_m - p_{m-1})$ if $c = 1$ and $1/2 + (p_{m-1} - p_m)$ if $c = 0$. It will follow that either N^0_m or N^1_m correctly predicts bit m with probability $1/2 + |p_m - p_{m-1}| \geq \epsilon/\ell$.

Consider the following experiments. In each, we choose an ℓ-tuple (z_1, \ldots, z_ℓ) according to $f(S)$ and an ℓ-tuple (r_1, \ldots, r_ℓ) according to U.

Experiment E_0: Succeed if $A(z_1, \ldots, z_{m-1}, \overline{z_m}, r_{m+1}, \ldots, r_\ell) = 1$.

Experiment E_1: Succeed if $A(z_1, \ldots, z_{m-1}, \overline{z_m}, r_{m+1}, \ldots, r_\ell) = 1$.

Experiment E_2: Succeed if $A(z_1, \ldots, z_{m-1}, \overline{r_m}, r_{m+1}, \ldots, r_\ell) = 1$.
Let \(q_j \) be the probability that experiment \(E_j \) succeeds, where \(j = 0, 1, 2 \). Clearly \(q_2 = (q_0 + q_1)/2 \) since \(r_m = z_m \) is equally likely as \(r_m = \bar{z}_m \).

Now, the inputs to \(A \) in experiment \(E_0 \) are distributed according to \(D_m \), so \(p_m = q_0 \). Also, the inputs to \(A \) in experiment \(E_2 \) are distributed according to \(D_{m-1} \), so \(p_{m-1} = q_2 \). Differentiating, we get \(p_m - p_{m-1} = q_0 - q_2 = (q_0 - q_1)/2 \).

We now analyze the probability that \(N^c_m \) correctly predicts bit \(m \) of \(f(S) \). Assume without loss of generality that \(A \)'s output is in \(\{0, 1\} \). A particular run of \(N^c_m(z_1, \ldots, z_{m-1}) \) correctly predicts \(z_m \) if
\[
A(z_1, \ldots, z_{m-1}, [r_m], \ldots, r_\ell) \oplus r_m \oplus c = z_m
\]
If \(r_m = z_m \), (1) simplifies to
\[
A(z_1, \ldots, z_{m-1}, [z_m], \ldots, r_\ell) = c
\]
and if \(r_m = \bar{z}_m \), (1) simplifies to
\[
A(z_1, \ldots, z_{m-1}, [\bar{z}_m], \ldots, r_\ell) = \bar{c}.
\]

Let \(\text{OK}^c_m \) be the event that \(N^c_m(Z_1, \ldots, Z_{m-1}) = Z_m \), i.e., that \(N^c_m \) correctly predicts bit \(m \) for \(f \). From (2), it follows that
\[
\text{prob}[\text{OK}^c_m \mid R_m = Z_m] = \begin{cases} q_0 & \text{if } c = 1 \\ (1 - q_0) & \text{if } c = 0 \end{cases}
\]
for in that case the inputs to \(A \) are distributed according to experiment \(E_0 \). Similarly, from (3), it follows that
\[
\text{prob}[\text{OK}^c_m \mid R_m = \bar{Z}_m] = \begin{cases} q_1 & \text{if } \bar{c} = 1 \\ (1 - q_1) & \text{if } \bar{c} = 0 \end{cases}
\]
for in that case the inputs to \(A \) are distributed according to experiment \(E_1 \). Since \(\text{prob}[R_m = Z_m] = \text{prob}[R_m = \bar{Z}_m] = 1/2 \), we have
\[
\text{prob}[\text{OK}^c_m] = \frac{1}{2} \cdot \text{prob}[\text{OK}^c_m \mid R_m = Z_m] + \frac{1}{2} \cdot \text{prob}[\text{OK}^c_m \mid R_m = \bar{Z}_m]
\]
\[
= \begin{cases} q_0/2 + (1 - q_1)/2 = 1/2 + p_m - p_{m-1} & \text{if } c = 1 \\ q_1/2 + (1 - q_0)/2 = 1/2 + p_{m-1} - p_m & \text{if } c = 0. \end{cases}
\]
Thus, \(\text{prob}[\text{OK}^c_m] = 1/2 + |p_m - p_{m-1}| \geq \epsilon/\ell \) for some \(c \in \{0, 1\} \), as desired.

2 BBS Generator

We now give a PRSG due to Blum, Blum, and Shub for which the problem distinguishing its outputs from the uniform distribution is closely related to the difficulty of determining whether a number with Jacobi symbol 1 is a quadratic residue modulo a certain kind of composite number called a Blum integer. The latter problem is believed to be computationally hard. First some background.

A **Blum prime** is a prime number \(p \) such that \(p \equiv 3 \pmod{4} \). A **Blum integer** is a number \(n = pq \), where \(p \) and \(q \) are Blum primes. Blum primes and Blum integers have the important property that every quadratic residue \(a \) has a square root \(y \) which is itself a quadratic residue. We call such a \(y \) a **principal square root** of \(a \) and denote it by \(\sqrt{a} \).
Lemma 4 Let \(p \) be a Blum prime, and let \(a \) be a quadratic residue modulo \(p \). Then \(y = a^{(p+1)/4} \mod p \) is a principal square root of \(a \) modulo \(p \).

Proof: We must show that, modulo \(p \), \(y \) is a square root of \(a \) and \(y \) is a quadratic residue. By the Euler criterion [Theorem 2, handout 15], since \(a \) is a quadratic residue modulo \(p \), we have \(a^{(p-1)/2} \equiv 1 \mod p \). Hence, \(y^2 \equiv (a^{(p+1)/4})^2 \equiv a^{(p-1)/2} \equiv a \mod p \), so \(y \) is a square root of \(a \) modulo \(p \). Applying the Euler criterion now to \(y \), we have

\[
y^{(p-1)/2} \equiv (a^{(p+1)/4})^2 \equiv (a^{(p-1)/2})^{(p+1)/4} \equiv 1^{(p+1)/4} \equiv 1 \mod p.
\]

Hence, \(y \) is a quadratic residue modulo \(p \).

Theorem 5 Let \(n = pq \) be a Blum integer, and let \(a \) be a quadratic residue modulo \(n \). Then \(a \) has four square roots modulo \(n \), exactly one of which is a principal square root.

Proof: By Lemma 4, \(a \) has a principal square root \(u \) modulo \(p \) and a principal square root \(v \) modulo \(q \). Using the Chinese remainder theorem, we can find \(x \) that solves the equations

\[
x \equiv \pm u \mod p \\
x \equiv \pm v \mod q
\]

for each of the four choices of signs in the two equations, yielding 4 square roots of \(a \) modulo \(n \). It is easily shown that the \(x \) that results from the \(+, + \) choice is a quadratic residue modulo \(n \), and the others are not.

From Theorem 4 it follows that the mapping \(b \mapsto b^2 \mod n \) is a bijection from the set of quadratic residues modulo \(n \) onto itself. (A bijection is a function that is 1–1 and onto.)

Definition: The Blum-Blum-Shub generator BBS is defined by a Blum integer \(n = pq \) and an integer \(\ell \). It is a \((\mathbb{Z}_n^*, \ell) \)-PRSG defined as follows: Given a seed \(s_0 \in \mathbb{Z}_n^* \), we define a sequence \(s_1, s_2, s_3, \ldots, s_\ell \), where \(s_i = s_{i-1}^2 \mod n \) for \(i = 1, \ldots, \ell \). The \(\ell \)-bit output sequence is \(b_1, b_2, b_3, \ldots, b_\ell \), where \(b_i = s_i \mod 2 \).

Note that any \(s_m \) uniquely determines the entire sequence \(s_1, \ldots, s_\ell \) and corresponding output bits. Clearly, \(s_m \) determines \(s_{m+1} \) since \(s_{m+1} = s_m^2 \mod n \). But likewise, \(s_m \) determines \(s_{m-1} \) since \(s_{m-1} = \sqrt{s_m} \), the principal square root of \(s_m \) modulo \(n \), which is unique by Theorem 5.

3 Security of BBS

Theorem 6 Suppose there is a probabilistic algorithm \(A \) that \(\epsilon \)-distinguishes \(\text{BBS}(\mathbb{Z}_n^*) \) from \(U \). Then there is a probabilistic algorithm \(Q(x) \) that correctly determines with probability at least \(\epsilon' = \epsilon/\ell \) whether or not an input \(x \in \mathbb{Z}_n^* \) with Jacobi symbol \(\left(\frac{x}{n} \right) = 1 \) is a quadratic residue modulo \(n \).

Proof: From \(A \), one easily constructs an algorithm \(\hat{A} \) that reverses its input and then applies \(A \). \(\hat{A} \) \(\epsilon \)-distinguishes the reverse of \(\text{BBS}(\mathbb{Z}_n^*) \) from \(U \). By Theorem 3 there is an \(\epsilon' \)-next bit predictor \(N_m \) for bit \(\ell - m + 1 \) of \(\text{BBS} \) reversed. Thus, \(N_m(b_{\ell}, b_{\ell-1}, \ldots, b_{m+1}) \) correctly outputs \(b_m \) with probability at least \(1/2 + \epsilon' \), where \((b_1, \ldots, b_\ell) \) is the (unreversed) output from \(\text{BBS}(\mathbb{Z}_n^*) \).
We now describe algorithm $Q(x)$, assuming $x \in \mathbb{Z}_n^*$ and $(\frac{x}{n}) = 1$. Using x as a seed, compute $(b_1, \ldots, b_\ell) = BBS(x)$ and let $b = N_m(b_{\ell-m}, b_{\ell-m-1}, \ldots, b_1)$. Output “quadratic residue” if $b = x \mod 2$ and “non-residue” otherwise.

To see that this works, observe first that $N_m(b_{\ell-m}, b_{\ell-m-1}, \ldots, b_1)$ correctly predicts b_0 with probability at least $\frac{1}{2} + \epsilon'$, where $b_0 = (\sqrt{x^2} \mod n) \mod 2$. This is because we could in principle let $s_{m+1} = x^2 \mod n$ and then work backwards defining $s_m = \sqrt{s_{m+1}} \mod n, s_{m-1} = \sqrt{s_m} \mod n, \ldots, s_0 = \sqrt{s_1} \mod n$. It follows that $b_0, \ldots, b_{\ell-m}$ are the last $\ell - m + 1$ bits of $BBS(s_0)$, and b_0 is the bit predicted by N_m.

Now, x and $-x$ are clearly square roots of s_{m+1}. We show that they both have Jacobi symbol 1. Since $(\frac{x}{n}) = (\frac{\sqrt{s_0}}{p}) \cdot (\frac{\sqrt{s_0}}{q}) = 1$, then either $(\frac{\sqrt{s_0}}{p}) = (\frac{\sqrt{s_0}}{q}) = 1$ or $(\frac{\sqrt{s_0}}{p}) = (\frac{\sqrt{s_0}}{q}) = -1$. But because p and q are Blum primes, -1 is a quadratic non-residue modulo both p and q, so $(\frac{-1}{p}) = (\frac{-1}{q}) = -1$. It follows that $(\frac{x}{n}) = 1$. Hence, $x = \pm \sqrt{s_{m+1}}$, so exactly one of x and $-x$ is a quadratic residue.

Since n is odd, $x \mod n$ and $-x \mod n$ have opposite parity. Hence, x is a quadratic residue iff x and $\sqrt{s_{m+1}}$ have the same parity. But N_m outputs $\sqrt{s_{m+1}} \mod 2$ with probability $1/2 + \epsilon'$, so it follows that Q correctly determines the quadratic residuosity of its argument with probability $1/2 + \epsilon'$.