Solution to Problem Set 7

Due in class on Thursday, November 17, 2005.
In the problems below, "textbook" refers to Introduction to Cryptography with Coding Theory: Second Edition by Trappe and Washington..

Problem 32: Discrete log authentication

Textbook, problem 14.3.2.

Solution:

part a
If Peggy does not know a she can't know both r_{1} and r_{2} at the same time. Otherwise she would know a, since $a=r_{1}+r_{2}$. If Victor requests the number that Peggy does not know, then his checks will fail, and he will not be convinced.
part b
By part (a), Peggy knows at most one of r_{1} and r_{2} at each trial. If Victor chooses i uniformly at random he has a probability of at most $1 / 2$ of getting a number from Peggy that passes his checks. Victor is convinced only if his checks succeed on each of t trials. The probability of that occurrence is at most $1 / 2^{t}$.
part c
The random number r is uniformly distributed over \mathbf{Z}_{p-1}. Less obvious is that $(a-r)$ is also uniformly distributed over \mathbf{Z}_{p-1}. This is because the mapping $r \mapsto(a-r)$ is a permutation on \mathbf{Z}_{p-1}. Hence, whichever r_{i} Victor requests, Nelson can just send back a random number in \mathbf{Z}_{p-1}, and Victor has nothing to verify it against. In Peggy's scheme, h_{1} and h_{2} serve to commit her to r and $a-r$, and Victor has the opportunity to verify one of those two commitments..

Problem 33: Challenge-response protocol

Textbook, problem 14.3.3.

Solution:

part a
What Nelson does is compute the square root $(\bmod p)$ and $(\bmod q)$ using the method of Section 3.9. He then combines the results using the Chinese Remainder Theorem to generate a square root $(\bmod n)$.

part b

Victor can generate a random number r and send $r^{2}(\bmod n)$. If he gets back a root r_{2} that is not r or $-r$ he can factor n by computing the $\operatorname{gcd}\left(r-r_{2}, n\right)$.
part \mathbf{c}
She gets no information. All she sees are pairs of the form $\left(y, y^{2}\right)$ that are indistinguishable from pairs generated by a simulator that generates y at random and gives her the pair $\left(y, y^{2}\right)$.

Problem 34: Schnorr identification scheme

Textbook, problem 14.3.4.

Solution:

part a

$$
\alpha^{y} \beta^{r} \equiv \alpha^{k-a r}\left(\alpha^{a}\right)^{r} \equiv \alpha^{k-a r+a r} \equiv \alpha^{k} \equiv \gamma(\bmod p)
$$

part b

No, all he knows after the protocol is γ, and y. He can't compute k from γ because that is a discrete \log problem. Since he doesn't know k, y looks just a random number (all possible values for a are equally likely given y). Therefore he can't get a from it.
part c
Those are the same values Victor knows. Since he can't compute a then neither can Eve.
part d
In that case Eve knows

$$
y_{1} \equiv k-a r_{1}(\bmod p-1)
$$

and

$$
y_{2} \equiv k-a r_{2} \quad(\bmod p-1)
$$

Knowing y_{1}, y_{2}, r_{1} and r_{2} she can solve for a and k.

Problem 35: RSA-based authentication scheme

Textbook, problem 14.3.5.

Solution:

Step 4: Victor asks for r_{i} with i chosen uniformly from $\{1,2\}$ and verifies that $r_{i}^{e} \equiv x_{i}(\bmod n)$. If Peggy is cheating she has a probability of successfully cheating of $\frac{1}{2}$ on each iteration. To have a 0.99 probability of catching a cheating Peggy they need to repeat the protocol s.t.

$$
\frac{1}{2^{t}} \leq 0.01
$$

so they need to repeat the protocol at least 7 times.

