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Solution to Problem Set 8

In the problems below, “textbook” refers to Introduction to Cryptography with Coding Theory:
Second Edition by Trappe and Washington..

Problem 36: Zero knowledge interactive proof for 3-colorability

An undirected graph G = (V, F) is said to be 3-colorable if there is an assignment vy : V' — {1, 2, 3}
such that for all edges {v,w} € E, v(v) # ~(w). The problem of testing if an arbitrary graph is
3-colorable is known to be NP-complete. Alice claims to know a coloring -+ for the public graph
G.

Here is the idea for a zero knowledge interactive proof whereby Alice can demonstrate knowl-
edge of a 3-coloring v to Bob without revealing any information about ~y. Alice generates a random
permutation p : {1,2,3} — {1,2, 3}, defines a new coloring of the graph v/ = p o ~, commits to
each of the colors 7/ (v) for v € V using bit commitment, and then sends each of the commitments
to Bob. Bob picks an edge {v, w} of G and asks Alice to reveal the hidden colors corresponding to
v and w. Alice does so and Bob verifies that they are different.

(a) Explain why Bob’s verification always succeeds if Alice and Bob are honest.

(b) Explain how a dishonest Alice who does not know a 3-coloring of G can fool Bob if she can
correctly guess in advance which edge Bob is going to ask about.

(c) Explain why a dishonest Alice who could successfully answer any of Bob’s permissible ques-
tions in fact does know (i.e., could efficiently compute) a 3-coloring of G.

(d) What is the probability that Bob will catch a dishonest Alice who doesn’t know a 3-coloring
of GG on one round of the protocol?

(e) How many times does this protocol need to be repeated in order to make Alice’s probability
of successful cheating less than 10767

(f) Explain why the protocol is zero knowledge.

Solution:
part a

If they are both honest then ~ is a correct 3-coloring of the graph. Then when Bob requests Alice
to open the commitments for an edge (u, v), he will be able to check what colors where assigned to
that node pair, convincing himself that u and v have different colors in 7.

part b

If Alice knows what edge Bob will ask for she can color those two nodes with different colors and
color the other nodes in any fashion. The result will not be a correct 3-coloring, but it will convince
Bob when he asks for the correctly colored edge.



2 Solution to Problem Set 8

part c

If Alice could successfully answer any of Bob’s permissible questions, this means that every edge
has a consistent coloring under ~/, that is, 4" colors the two endpoints differently. But then 7/ is a
3-coloring of the graph, contradicting the assumption that Alice does not know a 3-coloring.

part d

An incorrect coloring has at least one edge with an inconsistent coloring. If G = (V, E) then the
probability of Bob choosing an inconsistently colored edge, and thereby catching a dishonest Alice,
is at least ﬁ

part e

He will need to repeat the protocol ¢ times where ¢ is the smallest integer such that,

1\! 6
1) <10~
(-1

part f

In each round Bob learns the fact that two nodes have different colors in 4/. He also learns what
those colors are. However, that information does not help him to piece together a complete 3-
coloring of the graph from the knowledge gleaned from many rounds of the protocol. Because the
permutation p is chosen at random each time, the coloring 7' changes on each round. This makes
the pair of colors assigned to the two endpoints of an edge {v,w} on one iteration of the protocol
statistically independent of the color pair assigned to the revealed edge on any other iteration, so
the information Bob gets from one round of the protocol is of no help to him in finding a complete
3-coloring. All he learns at each round is a random pair of distinct numbers. Those pairs of numbers
could be computed by a simulator (which suggests how a formal proof of zero knowledge would
proceed).

Problem 37: Secret sharing basics

(a) Textbook, problem 12.3.2.

(b) Textbook, problem 12.3.3.

Solution:
part a
The Lagrange interpolation polynomial that goes through (1, 13) and (3,12) is

- 1
p(a:)zlS-jlv §+12-$ 1(molel)

Thus, p(2) =13-271 +12- 271, Now 27! = 51, s0 p(2) = 63 (mod 101).
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partb
The polynomial is
r—3 -5 z—1 -5 z—1 -3
=8 . 10 - . 11- . d 17).
o) =87y s P10 gy g T T s (med 1D
Plugging in z = 0, we get
0-3 0-5 0—-1 0-5 0-1 0-3
= 8. — 2.2 " 410 — . T4 — . 1
pO0) = 895 75 103y g5 T 5oy 5o (med D)
15 5 3
= 8 —+10- —+11- = d 17
8+ (_4)—1— 5 (mod 17)

= 814471 -8 (mod 17)
471 =13 (mod 17),

so the secret is 13.

Problem 38: Secret sharing with cheater

Textbook, problem 12.3.6.

Solution:

This problem is subject to many different interpretations. In the version that we consider here,
each participant sends its share to each other participant. The honest participants send their correct
shares. The cheater can send a different share to each participant. On the basis of the received
shares, each participant votes for a secret. The recovery succeeds if all honest participants vote for
the correct secret. (The cheater can vote for anything.)

part a

If two participants meet and the cheater is among them then the cheater can cause any secret to be
recovered by simply claiming that his share is the point that lies on the line determined by that (fake)
secret and the honest participant’s share. Hence, no information about the secret can be determined.

With three participants, each of the three pairs of participants can reconstruct a secret. If one of
the participants is a cheater, the three reconstructed secrets may all differ, but one of them (the one
from the two honest players) is correct. To find which secret is the correct combination to the safe,
all three combinations can be tried in turn.

Note that each honest participant can actually narrow the set of choices to the two secrets which
they helped to reconstruct, but the two honest players will not agree on what those sets are. Although
they have a common intersection, they also don’t know which other player is honest, so the cheater
can prevent them from reaching agreement on the correct secret.

part b

As mentioned above, three participants are not sufficient for the honest participants to determine the
secret. With four participants, the problem is easily solved. Each honest player reconstructs three
secrets, one with each of the other participants. Two of those participants are honest, so two of the
three reconstructed secrets will be the correct secret. Hence, each honest player simply votes for the
majority value of these three reconstructed secrets.
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Problem 39: Secret sharing implementation

Textbook, problem 12.4.3.

Solution:

After recovering all the secrets from all possible pairs,

Participants | Recovered secret
A B 69918

B C 927070

C D 21502

D A 21502

A C 21502

B D 391311

From the table we can conclude that the correct secret is 21502 and B has a broken share. The
program used to compute the result follows.

ho23-p39.java

import java.math.BigInteger;

public class LagrangePolinomial {

BigInteger _points[][];
BigInteger _n;
// expects and array of n,2 where points[i][0] is x_i and point[i][1l] = y_i
private LagrangePolinomial (String[][] points, BigInteger n) {
_points = convert (points);
_n=nj;
}
private BigInteger([][] convert (String[][] points) {
BigInteger[][] ret = new BigInteger[points.length][2];
for (int i=0;i<points.length;i++) {
ret[1][0]= new BigInteger (points[i][0]);
ret[i][1]= new BigInteger (points([i][1]);

}
return ret;
}
private BigInteger delta(int Jj,BigInteger x) {
BigInteger res=BigInteger.ONE;
int i=0;
for (i=0;i<_points.length; i++) {
if (1!'=3)
res=res.multiply (x.subtract (_points[i] [0]))
.multiply (_points[j][0].subtract (_points[i][0]) .modInverse(_n)) .mod(_n);
}
return res;

}

private BigInteger eval( BigInteger x) {
int i=0;
BigInteger res=BigInteger.ZERO;
for (i=0;i<_points.length;i++) {
res=res.add(_points[i] [1].multiply(delta(i,x))) .mod(_n);
}

return res;
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static void reveal (String[][]
LagrangePolinomial pol =
System.out.println (name+ " &

}

public static void main (Stringl[]

BigInteger n = new
Stringl[] a
String[] b
String[] c
String[] d

reveal (new
reveal (new
reveal (new
reveal (new
reveal (new
reveal (new

BigInt
= new
= new
= new
= new

Stringl[
String]|
Stringl[
String]|
Stringl

String

shares, BigInteger mod, String name) {
new LagrangePolinomial (shares, mod);
" + pol.eval (BigInteger.ZERO) + "

args) {

eger ("984583");
String[]{"38","358910"};
String[]{"3876","9612"};
String[]{"23112","28774"};
String[]{"432","178067"};

1l1{a,b},n,"AB");
111{b,c},n,"BC");
1[l1{c,d},n,"CD");
111{d,a},n, "DA");
1[l1{a,c},n,"AC");
[1[1{d,b},n,"BD");

AN
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