
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security
Notes 18 (rev. 1)

Professor M. J. Fischer November 3, 2005

Lecture Notes 18

1 Authentication While Preventing Impersonation

A fundamental problem with all of the password authentication schemes discussed so far is that
Alice reveals her secret to Bob every time she authenticates herself. This is fine in an environment
where she trusts Bob but not otherwise, for after authenticating herself once to Bob, then Bob can
in turn masquerade as Alice to others.

When neither Alice nor Bob trust each other, there are two requirements that must be met:

1. Bob wants to make sure that an impostor cannot successfully masquerade as Alice.

2. Alice wants to make sure that her secret remains secure.

At first sight these seem contradictory, but there actually are ways for Alice to prove her identity to
Bob without compromising her secret.

1.1 Challenge-response authentication protocols

In a challenge-response protocol, Bob presents Alice with a challenge that only the true Alice (some-
one knowing Alice’s secret) can answer. Alice answers the challenge and sends her answer to Bob,
who verifies that it is correct.

A challenge-response protocol can be built from a digital signature scheme (SA, VA) as shown
in Figure 1. (The same protocol can also be implemented using a symmetric cryptosystem with
shared key k.)

Alice Bob

1. r←− Choose random string r.

2. Compute s = SA(r) s−→ Check VA(r, s).

Figure 1: Simple challenge-response protocol.

The problem with this protocol is that it exposes Alice’s signature system to a chosen plaintext
attack. With this protocol, a malicious Bob can get Alice to sign any message of his choosing.
Among other things, this means that Alice had better have a different signing key for use with this
protocol than she uses to sign contracts.

While we hope our cryptosystems are resistant to chosen plaintext attacks, such attacks are very
powerful and are not easy to defend against. Anything we can do to limit exposure to such attacks
can only improve the security of the system.

We now look at some ways that Alice might limit Bob’s ability to carry out a chosen plaintext
attack. In the protocol of Figure 2, instead of signing a string r of Bob’s choice, Alice signs a string
r that is constructed from a part r1 chosen by Alice and a part r2 chosen by Bob. The idea is that
neither party be able to control r. Unfortunately, that idea does not work here because Bob gets r1



2 CPSC 467a Lecture Notes 18 (rev. 1)

Alice Bob

1. Choose random string r1
r1−→

2. r2←− Choose random string r2.

3. Compute r = r1 ⊕ r2 Compute r = r1 ⊕ r2

4, Compute s = SA(r) s−→ Check VA(r, s).

Figure 2: Attempt to resist chosen plaintext attack: Alice goes first.

before choosing r2. Instead of choosing r2 randomly, a cheating Bob can choose r2 = r⊕r1, where
r is the string that he wants Alice to sign as part of his chosen plaintext attack on her cryptosystem.
Thus, the protocol of Figure 2 is no more secure against chosen plaintext attack than the simpler
protocol of Figure 1.

Another possibility is to choose the random strings in the other order—Bob chooses first and
then Alice—giving the protocol of Figure 3. Now Alice is the one who has complete control over r.

Alice Bob

1. r2←− Choose random string r2.

2. Choose random string r1
r1−→

3. Compute r = r1 ⊕ r2 Compute r = r1 ⊕ r2

4, Compute s = SA(r) s−→ Check VA(r, s).

Figure 3: Attempt to resist chosen plaintext attack: Bob goes first.

This indeed thwarts Bob’s chosen plaintext attack since r is completely random (i.e., all strings r
are equally likely). No matter how Bob chooses r2, Alice choice of a random string r1 ensures that
r is also random. Thus, Alice only signs random messages.

Unfortunately, the protocol of Figure 3 is totally insecure against active eavesdroppers. Suppose
Mallory listens to a legitimate execution of the protocol between Alice and Bob. From this, he
easily acquires a valid signed message (r0, s0). Now Mallory can impersonate Alice by choosing
r1 = r0 ⊕ r2 in step 2 and s = s0 in step 4. Bob computes r = r1 ⊕ r2 = r0 in step 3, so his
verification in step 4 succeeds.

Both of these protocols can be improved by letting r be r1 ·r2 (concatenation) instead of r1⊕r2.
That way, neither party has full control over r. This weakens Bob’s ability to launch a chosen
plaintext attack in the protocol of Figure 2, and it weakens Mallory’s ability to impersonate Alice in
the protocol of Figure 3. A still better idea might be to let r = h(r1 · r2), where h is a cryptographic
hash function, since this further weakens the control that either party has on the choice of r.

2 Feige-Fiat-Shamir Authentication Protocol

In all of the challenge-response protocols above, Alice releases some partial information about
her secret by producing signatures that Bob could not compute by himself. As we will see, the
Feige-Fiat-Shamir protocol allows Alice to prove knowledge of her secret without revealing any
information about the secret itself. Such protocols are called zero knowledge, which we will discuss
in subsequent lectures.

The Feige-Fiat-Shamir protocol is based on the difficulty of computing square roots modulo
composite numbers. Alice chooses n = pq, where p and q are distinct large primes. Next she picks



CPSC 467a Lecture Notes 18 (rev. 1) 3

a quadratic residue v ∈ QRn (which she can easily do by choosing a random element u and letting
v = u2 mod n). Finally, she chooses s to be the smallest square root of v−1 (mod n).1 She can
do this since she knows the factorization of n. She makes n and v public and keeps s private.

Alice authenticates herself by successfully completing a protocol that requires knowledge of s.
We present a simplified version of the protocol in Figure 4. In a single round of the protocol, Bob
has at least a 50% chance of catching an impostor Mallory. By repeating the protocol t times, the
error probability (that is, the probability that Bob fails to catch Mallory) drops to 1/2t. This can be
made acceptably low by choosing t to be large enough. For example, if t = 20, then Mallory has
only one chance in a million of successfully impersonating Alice.

Alice Bob

1. Choose random r ∈ Zn.
Compute x = r2 mod n. x−→

2. b←− Choose random b ∈ {0, 1}.
3. Compute y = rsb mod n.

y−→ Check x = y2vb mod n.

Figure 4: One round of the simplified Feige-Fiat-Shamir authentication protocol.

To see that this works when both parties are honest, we just have to verify that

x = y2vb mod n. (1)

But this follows since

y2vb ≡ (rsb)2vb ≡ r2(s2v)b ≡ x(v−1v)b ≡ x (mod n).

2.1 Cheating Alice

We now turn to the security properties of the protocol when Alice is dishonest, that is, when a party
Mallory is attempting to impersonate Alice.

Theorem 1 Consider one round of the Feige-Fiat-Shamir protocol of Figure 4. Suppose Mallory,
who is attempting to impersonate Alice, doesn’t know a square root of v−1. Then Bob’s verification
will fail with probability at least 1/2.

Proof: In order for Mallory to successfully fool Bob, he must come up with x in step 1 and y in
step 3 satisfying (1). He does not know which value b Bob will choose when he is sends x in step 1.
Let yb be the string that Mallory sends to Bob in response to query b. We consider two cases.

Case 1: There is at least one b ∈ {0, 1} for which yb fails to satisfy (1). Since b = 0 and b = 1 each
occur with probability 1/2, this means that Bob’s verification will fail with probability at least 1/2,
as desired.

Case 2: y0 and y1 both satisfy (1) (for their respective values of b), so we have

x = y2
0 mod n

and
x = y2

1v mod n.

1Note that if v is a quadratic residue, then so is v−1 (mod n).



4 CPSC 467a Lecture Notes 18 (rev. 1)

We can solve these equations for v−1 to get

v−1 ≡ y2
1y

−2
0 (mod n)

But then y1y
−1
0 mod n is a square root of v−1. Since Mallory was able to compute both y1 and y0,

then he was also able to compute a square root of v−1, contradicting the assumption that he doesn’t
“know” a square root of v−1.

We remark that it is possible for Mallory to cheat with success probability 1/2. Here’s what he
does. He guesses the bit b that Bob will send him in step 2. He then generates a pair (x, y). If he
guesses b = 0, then he chooses x = r2 mod n and y = r mod n, just as Alice would have. If he
guesses b = 1, then he chooses y arbitrarily and x = y2v mod n. He then sends x in step 1 and y
in step 3. The pair (x, y) passes Bob’s check if Mallory’s guess of b turns out to be correct, which
will happen probability 1/2.

2.2 Cheating Bob

We now consider the case of a dishonest Mallory impersonating Bob. Alice would like assurance
that if she follows the protocol, her secret is protected, regardless of what Bob does.

Consider what Mallory knows at the end of the protocol. If he sent b = 0 in step 2, then he ends
up with a pair (x, y), where x is a random number and y is its square modulo n. Neither of these
numbers depend in any way on Alice secret s, so it’s intuitively obvious that this gives Mallory no
direct information about s. It’s also of no conceivable use to Mallory in trying to find s by other
means, for he can compute such pairs by himself without involving Alice. If having such pairs
allows him find a square root of v−1, then he was already able to compute square roots, contrary to
the assumption that finding square roots modulo n is difficult.

Instead, suppose Mallory sent b = 1 in step 2. Now he ends up with the pair (x, y), where
x = r2 mod n and y = rs mod n. While y might seem to give information about s, observe that y
itself is just a random element of Zn. This is because r is random, and the mapping r → rs mod n
is one-to-one for all s ∈ Z∗n. Hence, as r ranges through all possible values, so does rs mod n.
What does Mallory learn from x? Nothing that he could not have computed himself knowing y, for
x = y2v mod n. So again, all he ends up with is a random number (y in this case) and a quadratic
residue that he can compute knowing y.

In both cases, Mallory ends up with information that he could have computed without interacting
with Alice. Hence, if he could have discovered Alice’s secret by talking to Alice, then he could have
also done so on his own, contradicting the hardness assumption for computing square roots. This is
the sense in which Alice’s protocol releases zero knowledge about her secret.


	Authentication While Preventing Impersonation
	Challenge-response authentication protocols

	Feige-Fiat-Shamir Authentication Protocol
	Cheating Alice
	Cheating Bob


