Lecture Notes 19

1 Zero Knowledge Interactive Proofs

A round of the simplified Feige-Fiat-Shamir protocol is an example of a so-called zero-knowledge interactive proof. We now consider zero knowledge proofs in greater detail.

1.1 Secret cave protocol

The secret cave protocol illustrates the fundamental ideas behind zero knowledge without any reference to number theory or hardness of computation. Image a cave with tunnels and doors as shown in Figure 1. There are three opening to the cave: \(L \), \(C \), and \(R \). \(L \) and \(R \) are blocked by exit doors, like at a movie theater, which can be opened from the inside but are locked from the outside. The only way into the cave is through passage \(C \).

![Figure 1: The Secret Cave](image)

The cave itself consists of a U-shaped tunnel that runs between \(L \) and \(R \). There is a locked door \(D \) in the middle of this tunnel, dividing it into a left part and a right part. There is also a short tunnel from \(C \) that leads to a pair of doors \(D_L \) and \(D_R \) that lead into the left and right parts of the cave respectively. These doors are also one-way doors that allow passage from \(C \) into either the left or right parts of the cave, but once one passes through, the door locks behind and one cannot return to \(C \).

Now, Alice approaches Bob, tells him that she has a key that opens door \(D \), and offers to sell it to him. Bob would really like such a key, as he often goes into the cave to collect mushrooms and would like easy access to both sides of the cave without having to return to the surface to get into the other side. However, he doesn’t trust Alice that the key really works. He tells her, “Give me the
key so I can go down into the cave and try it to make sure that it really works.” Alice retorts, “I’m not that dumb. If I give you the key and you disappear into the cave, I’ll probably never see either you or my key again. Pay me first and then try the key.” Bob answers, “If I do that, then you’ll disappear with my money, and I’m likely to be stuck with a non-working key.”

They think about this problem for awhile, and then Alice suggests, “Here’s an idea: I’ll enter the cave through door C, go into the left part of the cave, open D with my key, go through it into the right part of the cave, and then come out door R. When you see me come out R, you’ll know I’ve succeeded in opening the door.” Bob thinks about this and then asks, “How do I know you’ll go into the left part of the cave? Maybe you’ll just go into the right part and come out door R and never go through D.” Alice says, “OK. I’ll go into either the left or right side of the cave. You’ll know I’m there because you’ll hear door D_L or D_R clank when it closes behind me. You then yell down into the cave which door you want me to come out—L or R—and I’ll do so. If I’m on the opposite side from what you request, then I’ll have no choice but to unlock D in order to pass through to the other side.” Bob is beginning to be satisfied, but he hesitates. “Well, yes, that’s true, but if you’re lucky and happen to be on the side I call out, then you don’t have to use your key at all, and I still won’t know that it works.” Alice answers, “Well, I might be lucky once, but I surely won’t be lucky 20 times in a row, so I’ll agree to do this 20 times. If I succeed in coming out the side you request all 20 times, do you agree to buy my key?” Bob agrees, and they spend the rest of the afternoon climbing in and out of the cave and shouting.

1.2 ZKIP for graph isomorphism

Two undirected graphs G and H are said to be isomorphic if there exists a bijection π from vertices of G to vertices of H that preserves edges. That is, $\{x, y\}$ is an edge of G if and only if $\{\pi(x), \pi(y)\}$ is an edge of H. There is no polynomial time algorithm known to decide, given two graphs G and H, whether they are isomorphic, also this problem is also not known to be NP-hard. There is also no known polynomial time algorithm for finding the isomorphism π given two isomorphic graphs G and H.

Now, suppose G_0 and G_1 are public graphs and Alice knows an isomorphism $\pi : G_0 \rightarrow G_1$. There is a zero knowledge proof whereby Alice can convince Bob that she knows an isomorphism π from G_0 to G_1, without revealing any information about π. In particular, she can convince Bob in this way that the graphs really are isomorphic, but Bob cannot turn around and convince Carol of that fact.

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Simultaneously choose a random isomorphic copy H of G_0 and an isomorphism $\tau : G_0 \rightarrow H$.</td>
<td>(H)</td>
</tr>
<tr>
<td>2. If $b = 0$, let $\sigma = \tau$. (\sigma)</td>
<td>Check $\sigma(G_b) = H$.</td>
</tr>
<tr>
<td>If $b = 1$, let $\sigma = \tau \circ \pi^{-1}$</td>
<td>(\sigma)</td>
</tr>
</tbody>
</table>

Figure 2: Interactive proof of graph isomorphism.

The protocol is similar to the simplified Feige-Fiat-Shamir protocol and is given in Figure 2. If both Alice and Bob follow this protocol, Bob’s check always succeeds. When $b = 0$, Alice send τ
in step 3, and Bob checks that τ is an isomorphism from G_0 to H. When $b = 1$, the function σ that Alice computes is an isomorphism from G_1 to H. This is because π^{-1} is an isomorphism from G_1 to G_0 and τ is an isomorphism from G_0 to H. Composing them gives an isomorphism from G_1 to H, so again Bob’s check succeeds.

The protocol is zero knowledge (at least informally) because in both cases, all Bob learns is a random isomorphic copy H of either G_0 or G_1 and the corresponding isomorphism, information that he could have constructed himself without consulting Alice. What convincing him that Alice really knows π is that in order to repeatedly pass his checks, the graph H of step 1 must be isomorphic to both G_0 and G_1. Moreover, Alice knows isomorphisms $\sigma_0 : G_0 \rightarrow H$ and $\sigma_1 : G_1 \rightarrow H$ since she can produce them upon demand. Hence, she also knows an isomorphism π from G_0 to G_1, since $\sigma_1^{-1} \circ \sigma_0$ is such a function.

1.3 Discussion

We have seen two examples of zero knowledge interactive proofs of knowledge of a secret. In the simplified Feige-Fiat-Shamir authentication scheme, Alice’s secret is a square root of v. In the graph isomorphism protocol, her secret is the isomorphism π. In all cases, the protocol has the form that Alice sends Bob a “commitment” string x, Bob sends a query bit b, and Alice replies with a response y_b. Bob then checks the triple (x, b, y_b) for validity.

These protocols both have the property that neither triple $(x, 0, y_0)$ nor $(x, 1, y_1)$ alone give any information about Alice’s secret, but y_0 and y_1 can be combined to reveal her secret. In the FFS protocol, $y_1 y_0^{-1} \mod n$ is a square root of v^{-1}. (Note: Since v^{-1} has four square roots, the revealed square root might not be the same as Alice’s secret, but it is equally valid as a means of impersonating Alice.) In the graph isomorphism protocol, $\sigma_1^{-1} \circ \sigma_0$ is an isomorphism mapping G_0 to G_1.

One way to view these protocols is that Alice splits her secret into two parts, y_0 and y_1. The probabilistic algorithm exemplified by the secret cave protocol allows Alice to convince Bob that she really has (or could produce on demand) both parts, but in doing so, she is only forced to reveal one of them. Each part by itself is statistically independent of the secret and hence gives Bob no information about the secret. Together, they can be used to recover the secret.

This is an example of secret splitting or secret sharing, an important topic in its own right that we will look at later in the term. We have seen other examples of secret sharing already in this course. In the one-time pad cryptosystem, the message m and key k are the same length. Assuming k is picked randomly, then both k and the ciphertext $m \oplus k$ are random bit strings, which is why Eve learns nothing about m if she doesn’t also possess k. Bob on the other hand recovers m from k and c by computing $c \oplus k$. What’s different in the zero knowledge proof example is that Bob has a way to check the validity of the parts that he gets during the protocol.

2 Other Kinds of Interactive Proofs

Not all interactive proofs follow this simple (x, b, y) pattern.

2.1 Interactive proof of graph non-isomorphism

Suppose Alice wants to prove to Bob that G_0 and G_1 are non-isomorphic graphs. Even ignoring questions of Alice’s privacy, there is no obvious data that she can send Bob that will allow him to easily verify that the two graphs are not isomorphic. However, under a different set of assumptions, Alice can nevertheless convince Bob of that fact, even though Bob couldn’t do so by himself.
In this version of interactive proof, we assume that Alice is all-powerful and can compute intractable problems. In particular, given two graphs, she can determine whether or not they are isomorphic. Bob on the other hand has no extraordinary powers and can just perform computation in the usual way. The way the protocol works is that Alice uses her computational powers to distinguish isomorphic copies of G_0 from isomorphic copies of G_1. If $G_0 \cong G_1$, there is no way she could do this, since any graph H isomorphic to one of them is also isomorphic to the other. So by convincing Bob that she is able to reliably distinguish such graphs, she is, as a byproduct, also convincing him of the underlying fact that $G_0 \not\cong G_1$. The protocol is given in Figure 3.

Figure 3: Interactive proof of graph non-isomorphism.

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Choose random $b \in {0, 1}$. Compute a random isomorphic copy H of G_b.</td>
</tr>
<tr>
<td>2. If $H \cong G_0$ let $b' = 0$. If $H \cong G_1$ let $b' = 1$.</td>
<td>$b' \rightarrow$ Check $b' = b$.</td>
</tr>
</tbody>
</table>

Note that in this protocol, Alice performs a computation for Bob that he could not do himself. Namely, Alice willingly tells Bob for any H of his choosing whether it is isomorphic to G_0 or to G_1. (In any implementation of the protocol, she also probably tells him if H is not isomorphic to either one, perhaps by failing in step 2 when b' is undefined.)

Bit commitment This protocol is also an example of bit-commitment, another important cryptographic primitive that we will study later. A bit-commitment is a kind of encryption of a bit that has the special property that the bit is hidden from anyone not knowing the secret key, and moreover, there is only one valid way of decrypting it. In other words, if $c = E_k(b)$, not only is it impossible, given c to determine whether $b = 0$ or $b = 1$, but also, $D_{k'}(c) = b$ for every k' for which $D_{k'}(c)$ is a valid decryption. In other words, if Bob produces a commitment c to a bit b, then b cannot be recovered from c without knowing Bob’s secret encoding key k, but also, there is no key k' that Bob might release that would make it appear that c is a commitment of the bit $1 - b$.

In this interactive proof, H is a commitment of Bob’s bit b. Bob could give H to Carol (who doesn’t have Alice’s extraordinary computational powers). Later Bob could convince Carol of his bit by telling her the isomorphism that proves $H \cong G_b$. But there is nothing he could do to make her believe that his bit was really $1 - b$ since $H \not\cong G_{1-b}$.

The actual protocol doesn’t use the commitment in quite this way, for rather than Bob later revealing his bit, Alice uses her special powers to discover the bit committed by H. I only point out the relationship to bit commitment now because will be looking at bit commitment later.

3 Definition of Zero Knowledge via Simulation

We have seen several examples of zero knowledge proofs but no careful definition of what it means to be “zero knowledge”. The intuition that “Bob learns nothing from Alice” surely isn’t true. After running the FFS protocol, for example, Bob learns the quadratic residue x that Alice computed in the first step. He didn’t know x before, nor did he and Alice know any quadratic residues in common
other than the public number \(v \). What we do want to capture by the notion of zero knowledge is that Bob learns nothing that might be useful in turning an intractable computation into a tractable one. To that end, we look at arbitrary algorithms for performing computations.

Suppose Mallory is trying to compute some function \(f(z) \). We regard Mallory as a probabilistic Turing machine with input tape and output tape. \(z \) is placed on the input tape at the beginning. If Mallory halts, the answer is the string that appears on the output tape.

Mallory also has the capability of playing Bob’s role in some zero-knowledge protocol, say FFS for definiteness. This means that during the computation, Mallory can read the number \(x \) that Alice sends at the start of FFS. Later, he can send a bit \(b \) to Alice. Later still, he can read the response \(y \) from Alice. After that, he continues to compute in order to produce the answer, \(f(z) \).

A Mallory-simulator, whom we’ll call Sam, is a program like Mallory except he is not on the internet and can’t talk to Alice. Alice’s protocol is zero knowledge if no matter what Mallory one looks at, there is a Mallory-simulator Sam that computes the same random function \(f(z) \) as Mallory. In other words, whatever Mallory does with the help of Alice, Sam can do alone. Thus, if Mallory computes some function with Alice’s help (such as writing a square root of \(v \) to the output tape), then Sam can also do that without Alice’s help. But under the assumption that taking square roots is hard, Sam couldn’t do that; hence Mallory also couldn’t do that, even after talking with Alice. We conclude that Alice doesn’t release information that would help Mallory to compute her secret; hence her secret is secure.

To show a particular interactive protocol is zero knowledge, it is necessary to show how the simulator can be constructed for an arbitrary program Mallory. Here’s a sketch of how to do that for the FFS protocol.

Sam can generate valid random triples of the form \((x, 0, y)\) and random triples of the form \((x, 1, y)\) that satisfy Bob’s checking equation \(x = y^2 v^b \mod n \). He generates the first kind the same way Alice does—by taking \(x = r^2 \mod n \) and \(y = r \mod n \). He generates the second kind by choosing \(y \) at random and \(x = y^2 v \mod n \). What he can’t do (without knowing Alice’s secret) is to generate both triples for the same value \(x \). Figure 4 sketches how he can simulate Mallory:

1. Choose a random value \(\hat{b} \in \{0, 1\} \).
2. Generate a valid random triple of the form \((x, \hat{b}, y)\).
3. Simulate Mallory up to the point where he requests a value from Alice. Pretend that Alice sent him \(x \) and continue.
4. Continue simulating Mallory until the point where Mallory is about to send a value \(b \) to Alice.
5. If \(b \neq \hat{b} \), go back to step 1. Otherwise, continue.
6. Continue simulating Mallory up to the point where he requests another value from Alice. Pretend that Alice sent him \(y \) and continue.
7. Continue simulating Mallory until he halts with an output.

Figure 4: Simulator for the FFS protocol.

It can be shown that the probability that \(b = \hat{b} \) in step 5 is 1/2; hence, the expected number of times Sam executes lines 1–4 is only 2. It can also be shown that Sam outputs the same answers as Mallory with the same probability distribution. Hence, the FFS protocol is zero knowledge.

Note that this proof depends on Sam’s ability to generate triples of both kinds without knowing Alice’s secret.