
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security
Notes 20 (rev. 1)

Professor M. J. Fischer November 10, 2005

Lecture Notes 20

1 Composing Zero-Knowledge Proofs

One round of the simplified FFS protocol has probability 0.5 of error. That is, Mallory could fool
Bob half the time. This is unacceptably high for most applications. By repeating the protocol t
times, we reduce this error probability to 1/2t. Taking t = 20, for example, reduces the probability
of error to less than on in a million. The downside of such serial repetition is that it also requires t
round trip messages between Alice and Bob (plus a final message from Alice to Bob).

1.1 Parallel execution of FFS rounds

One could also imagine running the t executions of the protocol in parallel. Let (xi, bi, yi) be
the messages exchanged during the ith execution of the simplified FFS protocol, 1 ≤ i ≤ t. In a
protocol execution, Alice sends (x1, . . . , xt) to Bob, then Bob sends (b1, . . . , bt) to Alice, then Alice
sends (y1, . . . , yt) to Bob, and finally Bob checks the t sets of values he has received, accepting only
if all checks pass.

A parallel execution is certainly attractive in practice, for it reduces the number of round-trip
messages between Alice and Bob to only 1 1/2. The downside is that the resulting protocol may
not be zero knowledge by our definition. Intuitively, the important difference between the serial and
parallel versions of the protocol is that in the latter, Bob gets to know all of the xi’s before choosing
the bi’s. While it seems implausible that this would actually help a cheating Bob to compromise
Alice secret, the simulation proof used to show that a protocol is zero knowledge no longer works.
First Sam would have to guess (b̂1, . . . b̂t). Then he can construct the xi’s and yi’s as before. But
when he finally gets to the point in Mallory’s program that Mallory generates the bi’s, the chance is
very high that his initial guesses were wrong and he will be forced to start over again. Indeed, the
probability that all t initial guesses are correct is only 1/2t.

2 Full Feige-Fiat-Shamir Authentication Protocol

The full Feige-Fiat-Shamir Authentication Protocol combines ideas of serial and parallel execution
to get a protocol that exhibits some of the properties of both.

A Blum prime is a prime p such that p ≡ 3 (mod 4). A Blum integer is a number n = pq, were
p and q are both Blum primes. A special property of Blum integers is that if a is a quadratic residue
modulo n, then exactly one of a’s four square roots modulo n is itself a quadratic residue.

To see this, note that a is a quadratic residue modulo both p and q. Claim 4 of lecture notes 13,
section 1.5 shows that one of a’s two square roots is a quadratic residue modulo p, say bp. Then
−bp is not a quadratic residue since −1 is not a quadratic residue modulo the Blum prime p by the
Euler Criterion of lecture notes 13, section 1.4. Similar, exactly one of a’s two square roots modulo
q is a quadratic residue. Applying the Chinese Remainder Theorem, it follows that exactly one of
a’s four square roots modulo n is a quadratic residue.

http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln20.pdf
http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln20.pdf
http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln20.pdf


2 CPSC 467a Lecture Notes 20 (rev. 1)

To generate the public and private keys of the full FFS protocol, Alice chooses a Blum integer
n. Next she chooses random numbers s1, . . . , sk ∈ Z∗n and random bits c1, . . . , ck ∈ {0, 1}. From
these, she computes vi = (−1)cis−2

i mod n, for i = 1, . . . , k. She makes (n, v1, . . . , vk) public
and keeps (n, s1, . . . , sk) private.

Notice that every vi is either a quadratic residue or the negation of a quadratic residue. It is
easily shown that all of the vi have Jacobi symbol 1 modulo n. A round of the protocol itself is
shown in Figure 1. The protocol is repeated for a total of t rounds.

Alice Bob

1. Choose random r ∈ Zn − {0}.
Choose random c ∈ {0, 1}.
Compute x = (−1)cr2 mod n

x−→
2.

b1,...,bk←− . Choose random b1, . . . , bk ∈ {0, 1}.
3. Compute y = rsb1

1 · · · s
bk
k mod n.

y−→
4. Compute z = y2vb1

1 · · · v
bk
k mod n.

Check z ≡ ±x (mod n) and z 6= 0.

Figure 1: One round of the full Feige-Fiat-Shamir authentication protocol.

To see that the protocol works when both Alice and Bob are honest, one needs to verify that
Bob’s checks will succeed. Plugging in for y, we get that

z = r2(s2b1
1 · · · s

2bk
k )(vb1

1 · · · v
bk
k ) mod n.

Since vi = (−1)cis−2
k , it follows that s2

i vi = (−1)ci . Hence,

z ≡ r2(s2
1v1)b1 · · · (s2

kvk)bk ≡ x(−1)c(−1)c1b1 · · · (−1)ckbk ≡ ±x (mod n).

Moreover, since x 6= 0, then also z 6= 0. Hence, Bob’s checks succeed.
The chance that a bad Alice can fool Bob is only 1/2kt. The authors recommend k = 5 and

t = 4 for a failure probability of 1/220.

3 Non-interactive Interactive Proofs

We have seen that going from a serial composition of interactive proofs to a parallel version reduces
communication overhead but possibly at the sacrifice of zero knowledge. Rather surprisingly, one
can go a step further to eliminate the interaction from interactive proofs altogether.

The idea here is that Alice will provide Bob with a trace of an execution of herself in an in-
teractive protocol with Bob. Bob will check the trace to make sure that it is a possible record of
an interaction between the two of them when both are following the protocol. Of course, that isn’t
enough to convince Bob that Alice isn’t cheating, for how does he ensure that Alice simulates ran-
dom query bits bi for him, and how does he ensure that Alice chooses her xi’s before knowing the
bi’s?

The solution to both of these puzzles is to make the bi’s depend in an unpredictable way on the
xi’s. We do this by choosing the bi’s from the value of a hash function applied to the concatenation
of the xi’s. Here’s how it works in, say, the parallel composition of t copies of the simplified
FFS protocol. The honest Alice chooses x1, . . . , xt according to the protocol. Next she chooses



CPSC 467a Lecture Notes 20 (rev. 1) 3

b1 . . . bt to be the first t bits of H(x1 · · ·xt). Finally, she computes y1, . . . , yt, again according to
the protocol. She sends Bob a single message consisting of x1, . . . , xt, y1, . . . , yt. Bob computes
b1 . . . bt to be the first t bits of H(x1 · · ·xt) and then performs each of the t checks of the FFT
protocol, accepting Alice’s proof only if all checks succeed.

A cheating Alice can choose yi arbitrarily and then compute a valid xi for a given bi. But if she
chooses the bi’s first, the chance that the xi’s she then computes will hash to a string that begins with
b1 . . . bt is only 1/2t.1 If some bi does not agree with the corresponding bit of the hash function, she
can either change bi and try to find a new yi that works with the given xi, or she can change xi to
try to get the ith bit of the hash value to change. However, neither of these approaches works. The
former requires knowledge of Alice’s secret; the latter will cause all of the bits of the hash function
to change “randomly”.

Note that one way Alice can attempt to cheat is to use a brute-force attack. For example, she
could generate all of the xi’s to be squares of the yi with the hopes that the hash of the xi’s will
make all bi = 0. But that is likely to require 2t−1 attempts on average. If t is chosen large enough
(say t = 80), the number of trials Alice would have to do in order to have a significant probability
of success is prohibitive.

Of course, these observations are not a proof that Alice can’t cheat; only that the obvious strate-
gies don’t work. Nevertheless, it is plausible that a cheating Alice not knowing Alice’s secret, really
wouldn’t be able to find a valid such “non-interactive interactive proof”.

Even if this is so, there is an important difference between the true interactive proofs we have
been discussing and this kind of non-interactive proof. With a true zero-knowledge interactive proof,
Bob does not learn anything about Alice’s secret, nor can Bob impersonate Alice to Carol after Alice
has authenticated herself to Bob. On the other hand, if Alice sends Bob a valid non-interactive proof,
then Bob can in turn send it on to Carol. Even though Bob couldn’t have produced it on his own, it
is still valid. So here we have the curious situation that Alice needs her secret in order to produce
the non-interactive proof string π, and Bob can’t learn Alice’s secret from π, but now Bob can use
π itself in an attempt to impersonate Alice to Carol.

4 Feige-Fiat-Shamir Signatures

A signature scheme has a lot in common with the “non-interactive interactive” proofs introduced
in lecture notes 20, section 4. In both cases, there is only a one-way communication from Alice to
Bob. Alice signs a message and sends it to Bob. Bob then verifies it without further interaction with
Alice. If Bob hands the message to Carol, then Carol can also verify that it was signed by Alice.

Not surprisingly, the “non-interactive interactive proof” ideas can be used to turn the Feige-Fiat-
Shamir authentication protocol of lecture notes 20, section 3 into a signature scheme. The signature
scheme we present here is based on a slightly simplified version of the aforementioned protocol in
which all of the vi’s in the public key are quadratic residues, and n is not required to be a Blum
integer, only a product of two distinct odd primes. The public verification key is (n, v1, . . . , vk),
and the private signing key is (n, s1, . . . , sk), where vj = s−2

j mod n (1 ≤ j ≤ k).
To sign a message m, Alice simulates t rounds of the protocol in parallel. She first chooses

random r1, . . . , rt ∈ Zn − {0} and computes

xi = r2
i mod n (1 ≤ i ≤ t).

1This assumes that the hash function “looks like” a random function. We have already seen artificial examples of hash
functions that do not have this property.

http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln20.pdf
http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln20.pdf
http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln20.pdf
http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln20.pdf


4 CPSC 467a Lecture Notes 20 (rev. 1)

Next she computes u = H(mx1 · · ·xt), where H is a suitable cryptographic hash function. She
chooses b1,1, . . . , bt,k according to the first tk bits of u, that is,

bi,j = u(i−1)∗k+j (1 ≤ i ≤ t, 1 ≤ j ≤ k).

Finally, she computes
yi = rs

bi,1

1 · · · sbi,k

k mod n (1 ≤ i ≤ t).

The signature is
s = (b1,1, . . . , bt,k, y1, . . . , yt).

To verify the signed message (m, s), Bob computes

zi = y2
i v

bi,1

1 · · · vbi,k

k mod n (1 ≤ i ≤ t).

Bob checks that each zi 6= 0 and that b1,1, . . . , bt,k are equal to the first tk bits of H(mz1 · · · zt).
When both Alice and Bob are honest, it is easily verified that zi = xi (1 ≤ i ≤ t). In that case,

Bob’s checks all succeed since xi 6= 0 and H(mz1 · · · zt) = H(mx1 · · ·xt).
To forge Alice’s signature, an impostor must find bi,j’s and yi’s that satisfy the equation

b1,1 . . . bt,k � H(m(y2
1v

b1,1

1 · · · vb1,k

k mod n) . . . (y2
t v

bt,1

1 · · · vbt,k

k mod n)).

where “�” means string prefix. It is not obvious how to solve such an equation without knowing a
square root of each of the v−1

i ’s and following essentially Alice’s procedure.


	Composing Zero-Knowledge Proofs
	Parallel execution of FFS rounds

	Full Feige-Fiat-Shamir Authentication Protocol
	Non-interactive Interactive Proofs
	Feige-Fiat-Shamir Signatures

