Lecture Notes 22

1 Bit-Commitment Problem (continued)

1.1 Commitment using hash functions

The analogy between bit commitment and hash functions described above suggests a bit-commitment scheme based on hash functions, as shown in Figure 1.

\begin{verbatim}
Alice Bob
To commit (b):
1. \hspace{1cm} \leftarrow \hspace{1cm} \text{Choose random string } r_1.
2. \hspace{1cm} \text{Choose random string } r_2.
 \hspace{1cm} \text{Compute } c = H(r_1 \cdot r_2 \cdot b).
 \hspace{1cm} \rightarrow \hspace{1cm} \text{c is commitment.}

To open (c):
3. \hspace{1cm} \rightarrow \hspace{1cm} \text{Send } r_2.
 \hspace{1cm} \text{Find } b' \in \{0, 1\} \text{ such that } c = H(r_1 \cdot r_2 \cdot b').
 \hspace{1cm} \text{If no such } b', \text{ then fail.}
 \hspace{1cm} \text{Otherwise, } b' \text{ is revealed bit.}
\end{verbatim}

Figure 1: Bit commitment using hash function.

The purpose of \(r_2 \) is to protect Alice’s secret bit \(b \). To find \(b \) before Alice opens the commitment, Bob would have to find \(r_2' \) and \(b' \) such that \(H(r_1 \cdot r_2' \cdot b') = c \). This is akin to the problem of inverting \(H \) and is likely to be hard, although the one-way property for \(H \) is not strong enough to imply this. On the one hand, if Bob succeeds in finding such \(r_2' \) and \(b' \), he has indeed inverted \(H \), but he does so only with the help of \(r_1 \)—information that is not generally available when attempting to invert \(H \).

The purpose of \(r_1 \) is to strengthen the protection that Bob gets from the hash properties of \(H \). Even without \(r_1 \), the strong collision-free property of \(H \) would imply that Alice cannot find \(c, r_2, \) and \(r_2' \) such that \(H(r_2 \cdot 0) = c = H(r_2' \cdot 1) \). But by using \(r_1 \), Alice would have to find a new colliding pair for each run of the protocol. This protects Bob by preventing Alice from exploiting a few colliding pairs for \(H \) that she might happen to discover.

1.2 Commitment using pseudorandom sequence generators

A pseudorandom sequence generator (PRSG) maps a “short” random seed to a “long” pseudorandom bit string. For a PRSG to be cryptographically strong, it must be difficult to correctly predict any generated bit, even knowing all of the other bits of the output sequence. In particular, it must also be difficult to find the seed given the output sequence, since if one knows the seed, then the whole sequence can be generated. Thus, a PRSG is a one-way function and more. While a hash
function might generate hash values of the form \(y^y \) and still be strongly collision-free, such a function could not be a PRSG since it would be possible to predict the second half of the output knowing the first half.

I am being intentionally vague at this stage about what “short” and “long” mean, but intuitively, “short” is a length like we use for cryptographic keys—long enough to prevent brute-force attacks, but generally much shorter than the data we want to deal with. Think of “short”=128 or \(=256 \) and you’ll be in the right ballpark. By “long”, we mean much larger sizes, perhaps thousands or even millions of bits. In practice, we usually thing of the output length as being variable, so that we can request as many output bits from the generator as we like and it will deliver them. Also, in practice, the bits are generally delivered a block at a time rather than all at once, so we don’t even need to announce in advance how many bits we want but can go back as needed to get more.

There are many ways to use a PRSG \(G \) for bit commitment. One such way is shown in Figure 2. Here, \(\rho \) is a security parameter that controls the probability that a cheating Alice can fool Bob. We let \(G_\rho(s) \) denote the first \(\rho \) bits of \(G(s) \).

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>To commit ((b)):</td>
<td></td>
</tr>
<tr>
<td>1. (r \leftarrow) Choose random string (r \in {0, 1}^\rho).</td>
<td></td>
</tr>
<tr>
<td>2. Choose random seed (s).
 Let (y = G_\rho(s)).
 If (b = 0) let (c = y).
 If (b = 1) let (c = y \oplus r).</td>
<td></td>
</tr>
<tr>
<td>To open ((c)):</td>
<td></td>
</tr>
<tr>
<td>3. Send (s).
 Let (y = G_\rho(s)).
 If (c = y) then reveal 0.
 If (c = y \oplus r) then reveal 1.
 Otherwise, fail.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Bit commitment using PRSG.

Assuming \(G \) is cryptographically strong, then \(c \) will look random to Bob, regardless of the value of \(b \), so he will be unable to get any information about \(b \).

The purpose of \(r \) is to protect Bob against a cheating Alice. Alice can cheat if she can find a triple \((c, s_0, s_1) \) such that \(s_0 \) opens \(c \) to reveal 0 and \(s_1 \) opens \(c \) to reveal 1. Such a triple must satisfy the following pair of equations:

\[
\begin{align*}
 c &= G_\rho(s_0) \\
 c &= G_\rho(s_1) \oplus r.
\end{align*}
\]

(1)

It is sufficient for her to solve the equation

\[
 r = G_\rho(s_0) \oplus G_\rho(s_1)
\]

(2)

for \(s_0 \) and \(s_1 \) and then choose \(c = G_\rho(s_0) \).

One might ask why Bob needs to choose \(r \)? Why can’t Alice choose \(r \), or why can’t \(r \) be fixed to some constant? If Alice chooses \(r \), then she can easily solve (2) and cheat. If \(r \) is fixed to a constant, then if Alice ever finds a triple \((c, s_0, s_1) \) satisfying (1), she can fool Bob every time. While finding such a pair would be difficult if \(G_\rho \) were a truly random function, any specific PRSG might have
special properties, at least for a few seeds, that would make this possible. For example, suppose
\(r = 1^\rho \) and \(G_\rho(\neg s_0) = \neg G_\rho(s_0) \) for some \(s_0 \). Then (2) could be solved by taking \(s_1 = \neg s_0 \). By
having Bob choose \(r \) at random, \(r \) will be different each time (with very high probability), and a
successful cheating Alice would be forced to solve (1) in general, not just for one special case.

2 Bit-Commitment Schemes

The three bit-commitment protocols of the previous section all have the same form. We abstract
from these protocols a cryptographic primitive, called a bit-commitment scheme, which consists of
a pair of key spaces \(K_A \) and \(K_B \), a blob space \(B \), a commitment function
\[
\text{enclose} : K_A \times K_B \times \{0, 1\} \to B,
\]
and an opening function
\[
\text{reveal} : K_A \times K_B \times B \to \{0, 1, \phi\},
\]
where \(\phi \) means “failure”. We say that a blob \(c \in B \) contains \(b \in \{0, 1\} \) if \(\text{reveal}(k_A, k_B, c) = b \)
for some \(k_A \in K_A \) and \(k_B \in K_B \).

These functions have three properties:

1. \(\forall k_A \in K_A, \forall k_B \in K_B, \forall b \in \{0, 1\}, \text{reveal}(k_A, k_B, \text{enclose}(k_A, k_B, b)) = b \);
2. \(\forall k_B \in K_B, \forall c \in B, \exists b \in \{0, 1\}, \forall k_A \in K_A, \text{reveal}(k_A, k_B, c) \in \{b, \phi\} \);
3. No feasible probabilistic algorithm that attempts to distinguish blobs containing 0 from those
 containing 1, given \(k_B \) and \(c \), is correct with probability significantly greater than 1/2.

The intention is that \(k_A \) is chosen by Alice and \(k_B \) by Bob. Intuitively, these conditions say:

1. Any bit \(b \) can be committed using any key pair \(k_A, k_B \), and the same key pair will open the
 blob to reveal \(b \).
2. For each \(k_B \), all \(k_A \) that successfully open \(c \) reveal the same bit.
3. Without knowing \(k_A \), the blob does not reveal any significant amount of information about
 the bit it contains, even when \(k_B \) is known.

A bit-commitment scheme looks a lot like a symmetric cryptosystem, with \(\text{enclose}(k_A, k_B, b) \)
playing the role of the encryption function and \(\text{reveal}(k_A, k_B, c) \) the role of the decryption function.
However, they differ both in their properties and in the environments in which they are used.
Conventional cryptosystems do not require condition 2, nor do they necessarily satisfy it. In a con-
ventional cryptosystem, it is assumed that Alice and Bob trust each other and both share a secret
key \(k \). The cryptosystem is designed to protect Alice’s secret message from a passive eavesdropper
Eve. In a bit-commitment scheme, Alice and Bob cooperate in the protocol but do not trust each
other to choose the key. Rather, the key is split into two pieces, \(k_A \) and \(k_B \), with each participant
controlling one piece.

A bit-commitment scheme can be turned into a bit-commitment protocol by plugging it into
the generic protocol given in Figure 3. Each of the bit-commitment protocols of [lecture notes 21, section 2]
and section 2 above can be regarded as an instance of the generic protocol. For example,
we get the protocol of Figure 1 of [lecture notes 21, section 2] by taking \(\text{enclose}(k_A, k_B, b) =
E_{k_A}(k_B \cdot b) \), and \(\text{reveal}(k_A, k_B, c) = \begin{cases} b & \text{if } k_B \cdot b = D_{k_A}(c) \\ \phi & \text{otherwise.} \end{cases} \)
Alice

To commit \((b)\):

1. Choose random \(k_A \in \mathcal{K}_A\).
2. Choose random \(k_B \in \mathcal{K}_B\).

Compute \(c = \text{enclose}(k_A, k_B, b)\).

\(c\) is commitment.

To open \((c)\):

3. Send \(k_A\).

Compute \(b = \text{reveal}(k_A, k_B, c)\).

If \(b = \phi\), then fail.
If \(b \neq \phi\), then \(b\) is revealed bit.

Figure 3: A generic bit commitment protocol.

3 Coin-Flipping

Alice and Bob are in the process of getting divorced and are trying to decide who gets custody of their pet cat, Fluffy. They both want the cat, so they agree to decide by flipping a coin: heads Alice wins; tails Bob wins. Bob has already moved out and does not wish to be in the same room with Alice. The feeling is mutual, so Alice proposes that she flip the coin and telephone Bob with the result.

This proposal of course is not acceptable to Bob since he has no way of knowing whether Alice is telling the truth when she says that the coin landed heads. “Look Alice,” he says, “to be fair, we both have to be involved in flipping the coin. We’ll each flip a private coin and XOR our two coins together to determine who gets Fluffy. You should be happy with this arrangement since even if you don’t trust me to flip fairly, your own fair coin is sufficient to ensure that the XOR is unbiased.”

This sounds reasonable to Alice, so she lets him go on to propose the protocol of Figure 4. In this protocol, \(1\) means “heads” and \(0\) means “tails”.

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Choose random bit (b_A \in {0, 1})</td>
<td>(b_A)</td>
</tr>
<tr>
<td>2. Choose random bit (b_B \in {0, 1})</td>
<td>(b_B)</td>
</tr>
<tr>
<td>3. Coin outcome is (b = b_A \oplus b_B)</td>
<td>Coin outcome is (b = b_A \oplus b_B).</td>
</tr>
</tbody>
</table>

Figure 4: Distributed coin flip protocol requiring honest parties.

After Alice considers Figure 4 for awhile, she objects. “This isn’t fair. You get to see my coin flip before I see yours, so now you have complete control over the value of \(b\).” She suggests that she would be happy if the first two steps were reversed, so that Bob flipped his coin first, but Bob balks at that suggestion.

They then both remember last week’s lecture and decide to use blobs to prevent either party from controlling the outcome. They agree on the protocol of Figure 5. At the completion of step 2, both Alice and Bob have each other’s commitment (something they failed to achieve in the past, which is why they’re in the middle of a divorce now), but neither know the other’s private bit. They each learn each other’s bit at the completion of the respective open protocols.

While this protocol appears to be completely symmetric, it really isn’t quite, for one of the parties completes step 3 before the other one does. Say Bob completes opening \(c_B\) first. At that
Figure 5: Distributed coin flip protocol using blobs.

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Choose random bit (b_A \in {0, 1}).</td>
<td>Choose random bit (b_B \in {0, 1}).</td>
</tr>
<tr>
<td>2. (\text{commit}(b_A)).</td>
<td>(\text{commit}(b_B)).</td>
</tr>
<tr>
<td>3. (\text{open}(c_A)).</td>
<td>(\text{open}(c_B)).</td>
</tr>
<tr>
<td>4. Coin outcome is (b = b_A \oplus b_B).</td>
<td>Coin outcome is (b = b_A \oplus b_B).</td>
</tr>
</tbody>
</table>

point, Alice knows \(b_B \) and hence the coin outcome \(b \). If it turns out that she lost, she might decide to stop the protocol and refuse to complete her part of step 3.

We haven’t really addressed the question for any of these protocols about what happens if one party quits in the middle or one party detects the other party cheating. We have only been concerned until now with the possibility of undetected cheating. But in any real situation, one party might feel that he or she stands to gain by cheating, even if the cheating is detected. That in turn raises complicated questions as to what happens next. Does a third party Carol become involved? If so, can Bob prove to Carol that Alice cheated? What if Alice refuses to talk to Carol? It may be instructive to think about the recourse that Bob has in similar real-life situations and to consider the reasons why such situations rarely arise. For example, what happens if someone fails to follow the provisions of a contract or if someone ignores a summons to appear in court?

4 Locked Box Paradigm

Protocols for coin flipping and for dealing a poker hand from a deck of cards can be based on the intuitive notion of locked boxes. This idea in turn can be implemented using commutative cryptosystems.

4.1 Coin-flipping using locked boxes

We discussed the coin-flipping problem in section 3 and presented a protocol based on bit-commitment. Here we present a coin-flipping protocol based on the idea of locked boxes.

- Imagine two sturdy boxes with hinged lids that can be locked with a padlock. Alice writes “heads” on a slip of paper and “tails” on another and places one of these slips in each box. She puts a padlock on each box for which she holds the only key. She then gives both locked boxes to Bob, in some random order.

- Bob cannot open the boxes and does not know which box contains “heads” and which contains “tails”. He chooses one of the boxes and locks it with his own padlock, for which he has the only key. Now the box has two locks on it, one belonging to Alice and one to Bob. He gives the doubly-locked box back to Alice.

- Alice removes her lock and returns the box to Bob.

- Bob removes his lock, opens the box, and learns the outcome of the coin toss. He gives the slip of paper from the unlocked box back to Alice.

- Alice verifies that it is her slip of paper, with her handwriting on it, that she prepared at the beginning. She sends her key to Bob.
Bob removes Alice’s lock from the other box and verifies that she carried out her protocol correctly. (In particular, he checks that the slip of paper in the other box contains the other coin value.)

4.2 Commutative cryptosystems

Alice and Bob can carry out this protocol electronically using any commutative cryptosystem, that is, one in which \(E_A(E_B(m)) = E_B(E_A(m)) \) for all messages \(m \). RSA is commutative for keys with a common modulus \(n \), so we can use RSA in an unconventional way. Rather than making the encryption exponent public and keeping the factorization of \(n \) private, we turn things around. Alice and Bob jointly chose primes \(p \) and \(q \), and both compute \(n = pq \). Alice then chooses an RSA key pair \(A = ((e_A, n), (d_A, n)) \), which she can do since she knows the factorization of \(n \). Similarly, Bob chooses an RSA key pair \(B = ((e_B, n), (d_B, n)) \) using the same \(n \). Alice and Bob both keep their key pairs private (until the end of the protocol, when they reveal them to each other to verify that there was no cheating).

We note that this scheme may have completely different security properties from usual RSA. In RSA, there are three different secrets involved with the key: the factorization of \(n \), the encryption exponent \(e \), and the decryption exponent \(d \). We have seen previously that knowing \(n \) and any two of these pieces of information allows the third to be reconstructed. Thus, knowing the factorization of \(n \) and \(e \) lets one compute \(d \) (easy). We also showed in section 1.3 of lecture 12 notes how to factor \(n \) given both \(e \) and \(d \).

The way RSA is usually used, only \(e \) is public, and it is believed to be hard to find the other quantities. Here we propose making the factorization of \(n \) public but keeping \(e \) and \(d \) private. It may indeed be hard to find \(e \) and \(d \), even knowing the factorization of \(n \), but if it is, that fact is not going to follow from the difficulty of factoring \(n \). Of course, for security, we need more than just that it is hard to find \(e \) and \(d \). We also need it to be hard to find \(m \) given \(c = m^e \pmod n \). This is reminiscent of the discrete log problem, but of course \(n \) is not prime in this case.

4.3 Coin-flipping using commutative cryptosystems

Assuming RSA used in this new way is secure, we can implement the locked box protocol as shown in Figure 6. Here we assume that Alice and Bob initially know large primes \(p \) and \(q \). In step (2), Alice chooses a random number \(r \) such that \(r < (n-1)/2 \). This ensures that \(m_0 \) and \(m_1 \) are both in \(\mathbb{Z}_n \). Note that \(i \) and \(r \) can be efficiently recovered from \(m_i \) since \(i \) is just the low-order bit of \(m_i \) and \(r = (m_i - i)/2 \).

To see that the protocol works when both Alice and Bob are honest, observe that in step 3, \(c_{ab} = E_B(E_A(m_j)) \) for some \(j \). Then in step 4, \(c_b = D_A(E_B(E_A(m_j))) = E_B(m_j) \) by the commutativity of \(E_A \) and \(E_B \). Hence, in step 5, \(m = m_j \) is one of Alice’s strings from step 2.

A dishonest Bob can control the outcome of the coin toss if he can find two keys \(B \) and \(B' \) such that \(E_B(c_a) = E_B'(c'_a) \), where \(C = \{c_a, c'_a\} \) is the set received from Alice in step 2. In this case, \(c_{ab} = E_B(E_A(m_j)) = E_B'(E_A(m_{1-j})) \) for some \(j \). Then in step 4, \(c_b = E_B(m_j) = E_B'(m_{1-j}) \). Hence, \(m_j = D_B(c_b) \) and \(m_{1-j} = D_B'(c_b) \), so Bob can obtain both of Alice’s messages and then send \(B \) or \(B' \) in step 5 to force the outcome to be as he pleases.

4.4 Card dealing using locked boxes

The same locked box paradigm can be used for dealing a 5-card poker hand from a deck of cards. Alice takes a deck of cards, places each card in a separate box, and locks each box with her lock.
Alice	Bob
1. Choose RSA key pair A with modulus $n = pq$. | Choose RSA key pair B with modulus $n = pq$.
2. Choose random $r \in \mathbb{Z}_{(n-1)/2}$.
 Let $m_i = 2r + i$, for $i \in \{0, 1\}$.
 Let $c_i = E_A(m_i)$ for $i \in \{0, 1\}$.
 Let $C = \{c_0, c_1\}$.
 \[C \xrightarrow{c_a} \text{Choose } c_a \in C.\]
3. \[c_{ab} \xleftarrow{c_a} \text{Let } c_{ab} = E_B(c_a).\]
4. Let $c_b = D_A(c_{ab})$.
5.
 Let $m = D_B(c_b)$.
 Let $i = m \mod 2$.
 Let $r = (m - i)/2$.
 If $i = 0$ outcome is “tails”.
 If $i = 1$ outcome is “heads”.
6. Let $m = D_B(c_b)$.
 Check $m \in \{m_0, m_1\}$.
 If $m = m_0$ outcome is “tails”.
 If $m = m_1$ outcome is “heads”.
7. \[c_a' \xrightarrow{c_a} \text{Let } c_a' = C - \{c_a\}.\]
 Let $m' = D_A(c_a')$.
 Let $i' = m' \mod 2$.
 Let $r' = (m' - i')/2$.
 Check that $i' \neq i$ and $r' = r$.

Figure 6: Distributed coin flip protocol using locked boxes.

She arranges the boxes in random order and ships them off to Bob. Bob picks five boxes, locks each with his lock, and send them back. Alice removes her locks from those five boxes and returns them to Bob. Bob unlocks them and obtains the five cards of his poker hand. Further details are left to the reader.