
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security
Notes 22 (rev. 1)

Professor M. J. Fischer November 17, 2005

Lecture Notes 22

1 Bit-Commitment Problem (continued)

1.1 Commitment using hash functions

The analogy between bit commitment and hash functions described above suggests a bit-
commitment scheme based on hash functions, as shown in Figure 1.

Alice Bob

To commit(b):

1. r1←− Choose random string r1.
2. Choose random string r2.

Compute c = H(r1r2b).
c−→ c is commitment.

To open(c):
3. Send r2. r2−→ Find b′ ∈ {0, 1} such that c = H(r1r2b

′).
If no such b′, then fail.
Otherwise, b′ is revealed bit.

Figure 1: Bit commitment using hash function.

The purpose of r2 is to protect Alice’s secret bit b. To find b before Alice opens the commitment,
Bob would have to find r′2 and b′ such that H(r1r

′
2b
′) = c. This is akin to the problem of inverting

H and is likely to be hard, although the one-way property for H is not strong enough to imply this.
On the one hand, if Bob succeeds in finding such r′2 and b′, he has indeed inverted H , but he does
so only with the help of r1—information that is not generally available when attempting to invert
H .

The purpose of r1 is to strengthen the protection that Bob gets from the hash properties of H .
Even without r1, the strong collision-free property of H would imply that Alice cannot find c, r2,
and r′2 such that H(r20) = c = H(r′21). But by using r1, Alice would have to find a new colliding
pair for each run of the protocol. This protects Bob by preventing Alice from exploiting a few
colliding pairs for H that she might happen to discover.

1.2 Commitment using pseudorandom sequence generators

A pseudorandom sequence generator (PRSG) maps a “short” random seed to a “long” pseudoran-
dom bit string. For a PRSG to be cryptographically strong, it must be difficult to correctly predict
any generated bit, even knowing all of the other bits of the output sequence. In particular, it must
also be difficult to find the seed given the output sequence, since if one knows the seed, then the
whole sequence can be generated. Thus, a PRSG is a one-way function and more. While a hash



2 CPSC 467a Lecture Notes 22 (rev. 1)

function might generate hash values of the form yy and still be strongly collision-free, such a func-
tion could not be a PRSG since it would be possible to predict the second half of the output knowing
the first half.

I am being intentionally vague at this stage about what “short” and “long” mean, but intuitively,
“short” is a length like we use for cryptographic keys—long enough to prevent brute-force attacks,
but generally much shorter than the data we want to deal with. Think of “short”=128 or =256 and
you’ll be in the right ballpark. By “long”, we mean much larger sizes, perhaps thousands or even
millions of bits. In practice, we usually thing of the output length as being variable, so that we can
request as many output bits from the generator as we like and it will deliver them. Also, in practice,
the bits are generally delivered a block at a time rather than all at once, so we don’t even need to
announce in advance how many bits we want but can go back as needed to get more.

There are many ways to use a PRSG G for bit commitment. One such way is shown in Figure 2.
Here, ρ is a security parameter that controls the probability that a cheating Alice can fool Bob. We
let Gρ(s) denote the first ρ bits of G(s).

Alice Bob

To commit(b):

1. r←− Choose random string r ∈ {0, 1}ρ.
2. Choose random seed s.

Let y = Gρ(s).
If b = 0 let c = y.
If b = 1 let c = y ⊕ r. c−→ c is commitment.

To open(c):
3. Send s. s−→ Let y = Gρ(s).

If c = y then reveal 0.
If c = y ⊕ r then reveal 1.
Otherwise, fail.

Figure 2: Bit commitment using PRSG.

Assuming G is cryptographically strong, then c will look random to Bob, regardless of the value
of b, so he will be unable to get any information about b.

The purpose of r is to protect Bob against a cheating Alice. Alice can cheat if she can find a
triple (c, s0, s1) such that s0 opens c to reveal 0 and s1 opens c to reveal 1. Such a triple must satisfy
the following pair of equations:

c = Gρ(s0)
c = Gρ(s1)⊕ r.

}
(1)

It is sufficient for her to solve the equation

r = Gρ(s0)⊕Gρ(s1) (2)

for s0 and s1 and then choose c = Gρ(s0).
One might ask why Bob needs to choose r? Why can’t Alice choose r, or why can’t r be fixed to

some constant? If Alice chooses r, then she can easily solve (2) and cheat. If r is fixed to a constant,
then if Alice ever finds a triple (c, s0, s1) satisfying (1), she can fool Bob every time. While finding
such a pair would be difficult if Gρ were a truly random function, any specific PRSG might have



CPSC 467a Lecture Notes 22 (rev. 1) 3

special properties, at least for a few seeds, that would make this possible. For example, suppose
r = 1ρ and Gρ(¬s0) = ¬Gρ(s0) for some s0. Then (2) could be solved by taking s1 = ¬s0. By
having Bob choose r at random, r will be different each time (with very high probability), and a
successful cheating Alice would be forced to solve (1) in general, not just for one special case.

2 Bit-Commitment Schemes

The three bit-commitment protocols of the previous section all have the same form. We abstract
from these protocols a cryptographic primitive, called a bit-commitment scheme, which consists of
a pair of key spaces KA and KB, a blob space B, a commitment function

enclose : KA ×KB × {0, 1} → B,

and an opening function
reveal : KA ×KB × B → {0, 1, φ},

where φ means “failure”. We say that a blob c ∈ B contains b ∈ {0, 1} if reveal(kA, kB, c) = b
for some kA ∈ KA and kB ∈ KB .

These functions have three properties:

1. ∀kA ∈ KA,∀kB ∈ KB,∀b ∈ {0, 1}, reveal(kA, kB, enclose(kA, kB, b)) = b;

2. ∀kB ∈ KB,∀c ∈ B,∃b ∈ {0, 1},∀kA ∈ KA, reveal(kA, kB, c) ∈ {b, φ}.

3. No feasible probabilistic algorithm that attempts to distinguish blobs containing 0 from those
containing 1, given kB and c, is correct with probability significantly greater than 1/2.

The intention is that kA is chosen by Alice and kB by Bob. Intuitively, these conditions say:

1. Any bit b can be committed using any key pair kA, kB , and the same key pair will open the
blob to reveal b.

2. For each kB , all kA that successfully open c reveal the same bit.

3. Without knowing kA, the blob does not reveal any significant amount of information about
the bit it contains, even when kB is known.

A bit-commitment scheme looks a lot like a symmetric cryptosystem, with enclose(kA, kB, b)
playing the role of the encryption function and reveal(kA, kB, c) the role of the decryption func-
tion. However, they differ both in their properties and in the environments in which they are used.
Conventional cryptosystems do not require condition 2, nor do they necessarily satisfy it. In a con-
ventional cryptosystem, it is assumed that Alice and Bob trust each other and both share a secret
key k. The cryptosystem is designed to protect Alice’s secret message from a passive eavesdropper
Eve. In a bit-commitment scheme, Alice and Bob cooperate in the protocol but do not trust each
other to choose the key. Rather, the key is split into two pieces, kA and kB , with each participant
controlling one piece.

A bit-commitment scheme can be turned into a bit-commitment protocol by plugging it into
the generic protocol given in Figure 3. Each of the bit-commitment protocols of lecture notes 21,
section 2 and section 2 above can be regarded as an instance of the generic protocol. For example,
we get the protocol of Figure 1 of lecture notes 21, section 2 by taking enclose(kA, kB, b) =

EkA
(kB · b), and reveal(kA, kB, c) =

{
b if kB · b = DkA

(c)
φ otherwise.

http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln21.pdf
http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln21.pdf
http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln21.pdf


4 CPSC 467a Lecture Notes 22 (rev. 1)

Alice Bob

To commit(b):

1. kB←− Choose random kB ∈ KB .
2. Choose random kA ∈ KA.

Compute c = enclose(kA, kB, b). c−→ c is commitment.

To open(c):

3. Send kA. kA−→ Compute b = reveal(kA, kB, c).
If b = φ, then fail.
If b 6= φ, then b is revealed bit.

Figure 3: A generic bit commitment protocol.

3 Coin-Flipping

Alice and Bob are in the process of getting divorced and are trying to decide who gets custody of
their pet cat, Fluffy. They both want the cat, so they agree to decide by flipping a coin: heads Alice
wins; tails Bob wins. Bob has already moved out and does not wish to be in the same room with
Alice. The feeling is mutual, so Alice proposes that she flip the coin and telephone Bob with the
result.

This proposal of course is not acceptable to Bob since he has no way of knowing whether Alice
is telling the truth when she says that the coin landed heads. “Look Alice,” he says, “to be fair, we
both have to be involved in flipping the coin. We’ll each flip a private coin and XOR our two coins
together to determine who gets Fluffy. You should be happy with this arrangement since even if
you don’t trust me to flip fairly, your own fair coin is sufficient to ensure that the XOR is unbiased.”
This sounds reasonable to Alice, so she lets him go on to propose the protocol of Figure 4. In this
protocol, 1 means “heads” and 0 means “tails”.

Alice Bob

1. Choose random bit bA ∈ {0, 1} bA−→.

2. bB←− Choose random bit bB ∈ {0, 1}.
3. Coin outcome is b = bA ⊕ bB . Coin outcome is b = bA ⊕ bB .

Figure 4: Distributed coin flip protocol requiring honest parties.

After Alice considers Figure 4 for awhile, she objects. “This isn’t fair. You get to see my coin
flip before I see yours, so now you have complete control over the value of b.” She suggests that she
would be happy if the first two steps were reversed, so that Bob flipped his coin first, but Bob balks
at that suggestion.

They then both remember last week’s lecture and decide to use blobs to prevent either party
from controlling the outcome. They agree on the protocol of Figure 5. At the completion of step 2,
both Alice and Bob have each other’s commitment (something they failed to achieve in the past,
which is why they’re in the middle of a divorce now), but neither know the other’s private bit. They
each learn each other’s bit at the completion of the respective open protocols.

While this protocol appears to be completely symmetric, it really isn’t quite, for one of the
parties completes step 3 before the other one does. Say Bob completes opening cB first. At that



CPSC 467a Lecture Notes 22 (rev. 1) 5

Alice Bob

1. Choose random bit bA ∈ {0, 1}. Choose random bit bB ∈ {0, 1}.
2. commit(bA). ←→ commit(bB).
3. open(cA). ←→ open(cB).
4. Coin outcome is b = bA ⊕ bB . Coin outcome is b = bA ⊕ bB .

Figure 5: Distributed coin flip protocol using blobs.

point, Alice knows bB and hence the coin outcome b. If it turns out that she lost, she might decide
to stop the protocol and refuse to complete her part of step 3.

We haven’t really addressed the question for any of these protocols about what happens if one
party quits in the middle or one party detects the other party cheating. We have only been concerned
until now with the possibility of undetected cheating. But in any real situation, one party might feel
that he or she stands to gain by cheating, even if the cheating is detected. That in turn raises
complicated questions as to what happens next. Does a third party Carol become involved? If
so, can Bob prove to Carol that Alice cheated? What if Alice refuses to talk to Carol? It may be
instructive to think about the recourse that Bob has in similar real-life situations and to consider the
reasons why such situations rarely arise. For example, what happens if someone fails to follow the
provisions of a contract or if someone ignores a summons to appear in court?

4 Locked Box Paradigm

Protocols for coin flipping and for dealing a poker hand from a deck of cards can be based on
the intuitive notion of locked boxes. This idea in turn can be implemented using commutative
cryptosystems.

4.1 Coin-flipping using locked boxes

We discussed the coin-flipping problem in section 3 and presented a protocol based on bit-
commitment. Here we present a coin-flipping protocol based on the idea of locked boxes.

• Imagine two sturdy boxes with hinged lids that can be locked with a padlock. Alice writes
“heads” on a slip of paper and “tails” on another and places one of these slips in each box.
She puts a padlock on each box for which she holds the only key. She then gives both locked
boxes to Bob, in some random order.

• Bob cannot open the boxes and does not know which box contains “heads” and which contains
“tails”. He chooses one of the boxes and locks it with his own padlock, for which he has the
only key. Now the box has two locks on it, one belonging to Alice and one to Bob. He gives
the doubly-locked box back to Alice.

• Alice removes her lock and returns the box to Bob.

• Bob removes his lock, opens the box, and learns the outcome of the coin toss. He gives the
slip of paper from the unlocked box back to Alice.

• Alice verifies that it is her slip of paper, with her handwriting on it, that she prepared at the
beginning. She sends her key to Bob.



6 CPSC 467a Lecture Notes 22 (rev. 1)

• Bob removes Alice’s lock from the other box and verifies that she carried out her protocol
correctly. (In particular, he checks that the slip of paper in the other box contains the other
coin value.)

4.2 Commutative cryptosystems

Alice and Bob can carry out this protocol electronically using any commutative cryptosystem, that
is, one in which EA(EB(m)) = EB(EA(m)) for all messages m. RSA is commutative for keys
with a common modulus n, so we can use RSA in an unconventional way. Rather than making the
encryption exponent public and keeping the factorization of n private, we turn things around. Alice
and Bob jointly chose primes p and q, and both compute n = pq. Alice then chooses an RSA key
pair A = ((eA, n), (dA, n)), which she can do since she knows the factorization of n. Similarly,
Bob chooses an RSA key pair B = ((eB, n), (dB, n)) using the same n. Alice and Bob both keep
their key pairs private (until the end of the protocol, when they reveal them to each other to verify
that there was no cheating).

We note that this scheme may have completely different security properties from usual RSA. In
RSA, there are three different secrets involved with the key: the factorization of n, the encryption
exponent e, and the decryption exponent d. We have seen previously that knowing n and any two of
these pieces of information allows the third to be reconstructed. Thus, knowing the factorization of
n and e lets one compute d (easy). We also showed in section 1.3 of lecture 12 notes how to factor
n given both e and d.

The way RSA is usually used, only e is public, and it is believed to be hard to find the other
quantities. Here we propose making the factorization of n public but keeping e and d private. It
may indeed be hard to find e and d, even knowing the factorization of n, but if it is, that fact is not
going to follow from the difficulty of factoring n. Of course, for security, we need more than just
that it is hard to find e and d. We also need it to be hard to find m given c = me mod n. This is
reminiscent of the discrete log problem, but of course n is not prime in this case.

4.3 Coin-flipping using commutative cryptosystems

Assuming RSA used in this new way is secure, we can implement the locked box protocol as shown
in Figure 6. Here we assume that Alice and Bob initially know large primes p and q. In step (2),
Alice chooses a random number r such that r < (n− 1)/2. This ensures that m0 and m1 are both
in Zn. Note that i and r can be efficiently recovered from mi since i is just the low-order bit of mi

and r = (mi − i)/2.
To see that the protocol works when both Alice and Bob are honest, observe that in step 3,

cab = EB(EA(mj)) for some j. Then in step 4, cb = DA(EB(EA(mj))) = EB(mj) by the
commutativity of EA and EB . Hence, in step 5, m = mj is one of Alice’s strings from step 2.

A dishonest Bob can control the outcome of the coin toss if he can find two keys B and B′ such
that EB(ca) = EB′(c′a), where C = {ca, c

′
a} is the set received from Alice in step 2. In this case,

cab = EB(EA(mj)) = EB′(EA(m1−j)) for some j. Then in step 4, cb = EB(mj) = EB′(m1−j).
Hence, mj = DB(cb) and m1−j = DB′(cb), so Bob can obtain both of Alice’s messages and then
send B or B′ in step 5 to force the outcome to be as he pleases.

4.4 Card dealing using locked boxes

The same locked box paradigm can be used for dealing a 5-card poker hand from a deck of cards.
Alice takes a deck of cards, places each card in a separate box, and locks each box with her lock.

http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln12.pdf


CPSC 467a Lecture Notes 22 (rev. 1) 7

Alice Bob

1. Choose RSA key pair A with mod-
ulus n = pq.

Choose RSA key pair B with mod-
ulus n = pq.

2. Choose random r ∈ Z(n−1)/2.
Let mi = 2r + i, for i ∈ {0, 1}.
Let ci = EA(mi) for i ∈ {0, 1}.
Let C = {c0, c1}.

C−→ Choose ca ∈ C.

3. cab←− Let cab = EB(ca).

4. Let cb = DA(cab).
cb−→

5. Let m = DB(cb).
Let i = m mod 2.
Let r = (m− i)/2.
If i = 0 outcome is “tails”.
If i = 1 outcome is “heads”.

B←−
6. Let m = DB(cb).

Check m ∈ {m0,m1}.
If m = m0 outcome is “tails”.
If m = m1 outcome is “heads”.

A−→
7. Let c′a = C − {ca}.

Let m′ = DA(c′a).
Let i′ = m′ mod 2.
Let r′ = (m′ − i′)/2.
Check that i′ 6= i and r′ = r.

Figure 6: Distributed coin flip protocol using locked boxes.

She arranges the boxes in random order and ships them off to Bob. Bob picks five boxes, locks each
with his lock, and send them back. Alice removes her locks from those five boxes and returns them
to Bob. Bob unlocks them and obtains the five cards of his poker hand. Further details are left to
the reader.


	Bit-Commitment Problem (continued)
	Commitment using hash functions
	Commitment using pseudorandom sequence generators

	Bit-Commitment Schemes
	Coin-Flipping
	Locked Box Paradigm
	Coin-flipping using locked boxes
	Commutative cryptosystems
	Coin-flipping using commutative cryptosystems
	Card dealing using locked boxes


