
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security
Notes 23 (rev. 1)

Professor M. J. Fischer November 29, 2005

Lecture Notes 23

1 Oblivious Transfer

In the locked box coin-flipping protocol, Alice has two messages m0 and m1. Bob gets one of them.
Alice doesn’t know which (until Bob tells her). Bob can’t cheat to get both messages. Alice can’t
cheat to learn which message Bob got. The oblivious transfer problem abstracts these properties
from particular applications such as coin flipping and card dealing,

1.1 Oblivious transfer of a secret

Alice has a secret s. In an oblivious transfer protocol, half of the time Bob learns s and half of the
time he learns nothing. Afterwards, Alice doesn’t know whether or not Bob learned s. Bob can do
nothing to increase his chances of getting s, and Alice can do nothing to learn whether or not Bob
got her secret. Rabin proposed an oblivious transfer protocol based on quadratic residuosity, shown
in Figure 1, in the early 1980’s.

Alice Bob

1. Secret s.
Choose primes p, q, and let n = pq.
Generate RSA public key (e, n).
Compute c = E(e,n)(s). (e,n,c)−→

2. Choose random x ∈ Z∗
n.

a←− Compute a = x2 mod n.

3. Check a ∈ QRn.
Choose y at random from among
the 4 square roots of a (mod n).

y−→
4. Check y2 ≡ a (mod n).

If y 6≡ ±x (mod n), use x, y to
factor n and decrypt c to obtain s.

Figure 1: Rabin’s oblivious transfer protocol.

Alice can can carry out step 3 since she knows the factorization of n and can find all of the square
roots of a. However, she has no idea which x Bob used to generate a. Hence, with probability 1/2,
y ≡ ±x (mod n) and with probability 1/2, y 6≡ ±x (mod n). If y 6≡ ±x (mod n), then the
two factors of n are gcd(x− y, n) and n/ gcd(x− y, n), so Bob factors n and decrypts c in step 4.
However, if y ≡ ±x (mod n), he learns nothing, and Alice’s secret is as secure as RSA itself.

2 CPSC 467a Lecture Notes 23 (rev. 1)

There is one potential problem with this protocol. A cheating Bob in step 2 might send a number
a which he generated by some other means than squaring a random x. In this case, he learns
something new no matter which square root Alice sends him in step 3. Perhaps that information,
together with what he already learned in the course of generating a, is enough for him to factor n.
We don’t know of any method by which Bob could find a quadratic residue without also knowing
one of its square roots. We certainly don’t know of any method that would produce a quadratic
residue a and some other information Ξ that, combined with y, would allow Bob to factor n. But
we also cannot prove that no such method exists.

We can fix this protocol by inserting between steps 2 and 3 a zero knowledge proof that Bob
knows a square root of a. This is essentially what the simplified Feige-Fiat-Shamir protocol does,
but we have to reverse the roles of Alice and Bob. Now Bob is the one with the secret square root
x. He wants to prove to Alice that he knows x, but he does not want Alice to get any information
about x, since if she learns x, she could choose y = x and reduce his chances of learning s while
still appear to be playing honestly. Again, details are left to the reader.

1.2 One-of-two oblivious transfer

In the one-of-two oblivious transfer, Alice has two secrets, s0 and s1. Bob always gets exactly one
of the secrets. He gets each with probability 1/2, and Alice does not know which he got.

The locked box protocol is one way to implement one-of-two oblivious transfer. Another is
based on a public key cryptosystem (such as RSA) and a symmetric cryptosystem (such as AES).
This protocol, given in Figure 2, does not rely on the cryptosystems being commutative.

Alice Bob

1. Choose two PKS key pairs (e0, d0)
and (e1, d1).

e0,e1−→
2. Generate random key k for a sym-

metric cryptosystem (Ê, D̂).
Choose e ∈ {e0, e1}.

c←− Compute c = Ee(k).

3. Compute ki = Ddi
(c) for i = 0, 1.

Compute ci = Êki
(si) for i = 0, 1.

c0,c1−→
4. Compute si = D̂k(ci) for i = 0, 1.

One of the si is correct and the other
is garbage.

Figure 2: One-of-two oblivious transfer using two PKS key pairs.

In step 2, Bob encrypts a randomly chosen key k for the symmetric cryptosystem using one of
the encryption keys that Alice sent him in step 1. One of the ki Alice computes in step 3 is Bob’s
key k, but because k is random, she can’t tell which it is. However, the key that is different from k
cannot be computed by Bob since Bob doesn’t have the corresponding decryption key di.

Note that this protocol depends on Bob being able to distinguish good secrets from random-
looking garbage. To make it work for arbitrary secrets, Alice can add some known redundancy to
the secrets that Bob can recognize. Another possibility would be for her to encrypt c · si in step 3

CPSC 467a Lecture Notes 23 (rev. 1) 3

instead of just si. Since Bob knows c, he could then check the two possible decryptions to see which
one began with c.

2 Pseudorandom Sequence Generation

We mentioned pseudorandom sequence generation in section 1.3 of lecture notes 11. In a little more
detail, a pseudorandom sequence generator G is a function from a domain of seeds S to a domain
of strings X . We will generally find it convenient to assume that all of the seeds in S have the
same length m and that all of the strings in X have the same length n, where m � n and n is
polynomially related to m.

Intuitively, we want the strings G(s) to “look random”. But what does that mean? Chaitin
and Kolmogorov proposed ways of defining what it means for an individual sequence to be consid-
ered random. While philosophically very interesting, these notions are somewhat different than the
statistical notions that most people mean by randomness.

We take a different tack. We assume that the seeds are chosen uniformly at random from S, that
is, we consider a uniformly distributed random variable S over S. Then X = G(S) is a random
variable over X . For x ∈ X ,

prob[X = x] =
|{s ∈ S | G(s) = x}|

|S|
.

That is, the probability is the fraction of seeds that give rise to x. Because m � n, |S| = 2m, and
|X | = 2n, most strings in X are not in the range of G and hence have probability 0. If G happens
to be one-to-one, then the remaining strings each have probability 1/2m.

We also consider the uniform random variable U ∈ X , where U = x with probability 1/2n for
every x ∈ X . U is what we usually mean by a “truly random” variable on n-bit strings.

We will say that G is a cryptographically strong pseudorandom sequence generator if X and U
are indistinguishable to all probabilistic polynomial Turing machines. We have already seen that
the probability distributions of X and U are quite different. Nevertheless, they are indistinguishable
if there is no feasible algorithm to determine whether random samples come from X or from U .

Before going further, let me describe some functions G for which G(S) is readily distin-
guished from U . Suppose every string x = G(s) has the form b1b1b2b2b3b3 . . ., for example
0011111100001100110000. . . . An algorithm that guesses that x came from G(S) if x is of that
form, and guesses that x came from U otherwise, will be right almost all of the time. True, it is
possible to get a string like this from U , but it is extremely unlikely.

Formally speaking, a judge is a probabilistic Turing machine J that takes an n-bit string as
input and produces a single bit b as output. Because it is probabilistic, it actually defines a random
function from X to {0, 1}. This means that for every input x, there is some probability px that the
output is 1. If the input string is itself a random variable X , then the probability that the output
is 1 is the weighted sum over all possible inputs that the judge outputs 1, where the weights are
the probabilities of the corresponding inputs occurring. Thus, the output value is itself a random
variable which we denote by J(X).

Now, we say that two random variables X and Y are ε-indistinguishable by judge J if

|prob[J(X) = 1]− prob[J(Y) = 1]| < ε.

Intuitively, we say that G is cryptographically strong if G(S) and U are ε-indistinguishable for
suitably small ε by all judges that do not run for too long. A careful mathematical treatment of the

http://zoo.cs.yale.edu/classes/cs467/2005f/course/lectures/ln22.pdf

4 CPSC 467a Lecture Notes 23 (rev. 1)

concept of indistinguishability must relate the length parameters m and n, the error parameter ε,
and the allowed running time of the judges, all of which is beyond the scope of this course.
[Note: The topics covered by these lecture notes are presented in more detail and with greater
mathematical rigor in handout 21.]

3 BBS Pseudorandom Sequence Generator

We present a cryptographically strong PRSG due to Blum, Blum, and Shub. The generator is based
on the difficulty of determining, for a given a ∈ Z∗

n with Jacobi symbol
(

a
n

)
= 1, whether or not

a is a quadratic residue, i.e., whether or not a ∈ QRn. Recall from lecture notes 13, that this is
the property upon on which the security of the Goldwasser-Micali probabilistic encryption system
relies. The BBS generator further requires n to be a certain kind of composite number called a Blum
integer. Blum primes and Blum integers were introduced in lecture notes 20.

We review their properties here.

3.1 Blum integers

A Blum prime is a prime number p such that p ≡ 3 (mod 4). A Blum integer is a number n = pq,
where p and q are Blum primes. Blum primes and Blum integers have the important property that
every quadratic residue a has a square root y which is itself a quadratic residue. We call such a y
a principal square root of a and denote it by

√
a (mod n) or simply by

√
a when it is clear that

(mod n) is intended.
We need two other facts about Blum integers n.

Claim 1 Let a ∈ QRn. Then
(

a
n

)
=

(−a
n

)
= 1.

Let lsb(x) be the least significant bit of integer x. That is, lsb(x) = (x mod 2).

Claim 2 Let x ∈ Zn. Then lsb(x)⊕ lsb(−x) = 1.

Claim 1 actually holds for all n which are the product of two distinct odd primes. Claim 2 holds
whenever n is odd.

3.2 BBS algorithm

The Blum-Blum-Shub generator BBS is defined by a Blum integer n = pq and an integer `. It maps
strings in Z∗

n to strings in {0, 1}`. Given a seed s0 ∈ Z∗
n, we define a sequence s1, s2, s3, . . . , s`,

where si = s2
i−1 mod n for i = 1, . . . , `. The `-bit output sequence is b1, b2, b3, . . . , b` , where

bi = lsb(si).

3.3 Bit-prediction

One important property of the uniform distribution U on bit-strings b1, . . . , b` is that the individual
bits are statistically independent from each other. This means that the probability that a particular bit
bi = 1 is unaffected by the values of the other bits in the sequence. This implies that any algorithm
that attempts to predict bi, even knowing other bits of the sequence, will be correct only 1/2 of the
time. We now translate this property of unpredictability to pseudorandom sequences.

http://zoo.cs.yale.edu/classes/cs467/2005f/course/handouts/ho21.pdf
http://zoo.cs.yale.edu/classes/cs467/2005f/course/handouts/ln13.pdf
http://zoo.cs.yale.edu/classes/cs467/2005f/course/handouts/ln20.pdf

CPSC 467a Lecture Notes 23 (rev. 1) 5

3.3.1 Next-bit prediction

One property we would like a pseudorandom sequence to have is that it be difficult to predict the
next bit given the bits that came before.

We say that an algorithm A is an ε-next-bit predictor for bit i of a PRSG G if

prob[A(b1, . . . , bi−1) = bi] ≥
1
2

+ ε

where (b1, . . . , bi) = Gi(S). To explain this notation, S is a uniformly distributed random variable
ranging over the possible seeds for G. G(S) is a random variable (i.e., probability distribution)
over the output strings of G, and Gi(S) is the corresponding probability distribution on the length-i
prefixes of G(S).

Next-bit prediction is closely related to indistinguishability, introduced in section 2. We will
show later that if if G(S) has a next-bit predictor for some bit i, then G(S) is distinguishable from
the uniform distribution U on the same length strings, and conversely, if G(S) is distinguishable
from U , then there is a next-bit predictor for some bit i of G(S). The precise definitions under
which this theorem is true are subtle, for one must quantify both the amount of time the judge
and next-bit predictor algorithms are permitted to run as well as how much better than chance the
judgments or predictions must be in order to be considered a successful judge or next-bit predictor.
We defer the mathematics for now and focus instead on the intuitive concepts that underly this
theorem.

3.3.2 Building a judge from a next-bit predictor

Suppose a PRSG G has an ε-next-bit predictor A for some bit i. Here’s how to build a judge J
that distinguishes G(S) from U . The judge J , given a sample string drawn from either G(S) or
from U , runs algorithm A to guess bit bi from bits b1, . . . , bi−1. If the guess agrees with the real bi,
then J outputs 1 (meaning that he guesses the sequence came from G(S)). Otherwise, J outputs
0. For sequences drawn from G(S), J will output 1 with the same probability that A successfully
predicts bit bi, which is at least 1/2 + ε. For sequences drawn from U , the judge will output 1 with
probability exactly 1/2. Hence, the judge distinguishes G(S) from U with advantage ε.

It follows that no cryptographically strong PRSG can have an ε-next-bit predictor. In other
words, no algorithm that attempts to predict the next bit can have more than a “small” advantage ε
over chance.

3.4 Previous-bit prediction

Previous-bit prediction, while perhaps less natural, is analogous to next-bit prediction. An ε-
previous-bit predictor for bit i is an algorithm that, given bits bi+1, . . . , b`, correctly predicts bi

with probability at least 1/2 + ε.
As with next-bit predictors, it is the case that if G(S) has a previous-bit predictor for some bit

bj , then some judge distinguishes G(S) from U . Again, I am being vague with the exact conditions
under which this is true. The somewhat surprising fact follows that G(S) has an ε-next-bit predictor
for some bit i if and only if it has an ε′-previous-bit predictor for some bit j (where ε and ε′ are
related but not necessarily equal).

To give some intuition into why such a fact might be true, we look at the special case of ` = 2,
that is, of 2-bit sequences. The probability distribution G(S) can be described by four probabilities

pu,v = prob[b1 = u ∧ b2 = v], where u, v ∈ {0, 1}.

6 CPSC 467a Lecture Notes 23 (rev. 1)

Written in tabular form, we have
b2

b1

0 1
0 p0,0 p0,1

1 p1,0 p1,1

We describe an algorithm A(v) for predicting b1 given b2 = v. A(v) predicts b1 = 0 if p0,v >
p1,v, and it predicts b1 = 1 if p0,v ≤ p1,v. In other words, the algorithm chooses the value for b1

that is most likely given that b2 = v. Let a(v) be the value predicted by A(v).

Theorem 1 If A is an ε-previous-bit predictor for b1, then A is an ε-next-bit predictor for either b1

or b2.

Proof: Assume A is an ε-previous-bit predictor for b1. Then A correctly predicts b1 given b2 with
probability at least 1/2 + ε. We show that A is an ε-next-bit predictor for either b1 or b2.

We have two cases:
Case 1: a(0) = a(1). Then algorithm A does not depend on v, so A itself is also an ε-next-bit
predictor for b1.
Case 2: a(0) 6= a(1). The probability that A(v) correctly predicts b1 when b2 = v is given by the
conditional probability

prob[b1 = a(v) | b2 = v] =
prob[b1 = a(v) ∧ b2 = v]

prob[b2 = v]
=

pa(v),v

prob[b2 = v]

The overall probability that A(b2) is correct for b1 is the weighted average of the conditional prob-
abilities for v = 0 and v = 1, weighted by the probability that b2 = v. Thus,

prob[A(b2) is correct for b1] =
∑

u∈{0,1}
prob[b1 = a(v) | b2 = v] · prob[b2 = v]

=
∑

u∈{0,1}
pa(v),v

= pa(0),0 + pa(1),1

Now, since a(0) 6= a(1), the function a is one-to-one and onto. A simple case analysis shows
that either a(v) = v for v ∈ {0, 1}, or a(v) = ¬v for v ∈ {0, 1}. That is, a is either the identity
or the complement function. In either case, a is its own inverse. Hence, we may also use algorithm
A(u) as a predictor for b2 given b1 = u. By a similar analysis to that used above, we get

prob[A(b1) is correct for b2] =
∑

v∈{0,1}
prob[b2 = a(u) | b1 = u] · prob[b1 = u]

=
∑

u∈{0,1}
pu,a(u)

= p0,a(0) + p1,a(1)

But
pa(0),0 + pa(1),1 = p0,a(0) + p1,a(1)

since either a is the identity function or the complement function. Hence, A(b1) is correct for b2

with the same probability that A(b2) is correct for b1. Therefore, A is an ε-next-bit predictor for b2.
In both cases, we conclude that A is an ε-next-bit predictor for either b1 or b2.

CPSC 467a Lecture Notes 23 (rev. 1) 7

3.5 Security of BBS generator

We now show that if BBS has a previous-bit predictor, then there is an algorithm for testing quadratic
residues whose running time and accuracy are related to the running time and accuracy of the BBS
predictor. Thus, if quadratic-residue-testing is “hard”, then so is previous-bit prediction for BBS.
See handout 21 for further results on the security of BBS.

Theorem 2 Let A be an ε-previous-bit predictor for BBS(S). Then we can find an algorithm Q for
testing whether a number x with Jacobi symbol 1 is a quadratic residue, and Q will be correct with
probability at least 1/2 + ε.

Proof: Assume that A predicts bj given the k bits bj+1, . . . , bj+k. Then A also predicts b1 given
b2, . . . , bk with the same accuracy. This follows from the fact that the mapping x 7→ x2 mod n
is a permutation on QRn. Hence, s0 and sj−1 are identically distributed, so the k-bit prefixes of
BBS(s0) and BBS(sj−1) are likewise identically distributed.

Algorithm Q(x), shown in Figure 3, tests whether or not a number x with Jacobi symbol 1 is a
quadratic residue modulo n. It outputs 1 to mean x ∈ QRn and 0 to mean x 6∈ QRn.

To Q(x):
1. Let s2 = x2 mod n.
2. Let si = s2

i−1 mod n, for i = 3, . . . , k.
3. Let b1 = lsb(x).
4. Let bi = lsb(si), for i = 2, . . . , k.
5. Let c = A(b2, . . . , bk).
6. If c = b1 then output 1; else output 0.

Figure 3: Algorithm Q for testing x ∈ QRn.

Since
(

x
n

)
= 1, then either x or −x is a quadratic residue. Let s0 be the principal square root

of x or −x and consider the first k bits of BBS(s0). We have two cases:
If x ∈ QRn, the sequence of seeds is s0, x, s2, . . . , sk and the corresponding sequence of output
bits is

b1, b2, . . . , bk.

If−x ∈ QRn, the sequence of seeds is s0,−x, s2, . . . , xk and the corresponding sequence of output
bits is

¬b1, b2, . . . , bk.

Hence, if the predicted first bit c is correct, then

c = b1 iff x ∈ QRn.

Since the predicted bit is correct with probability at least 1/2 + ε, algorithm Q is correctly with
probability at least 1/2 + ε.

http://zoo.cs.yale.edu/classes/cs467/2005f/course/handouts/ho21.pdf

	Oblivious Transfer
	Oblivious transfer of a secret
	One-of-two oblivious transfer

	Pseudorandom Sequence Generation
	BBS Pseudorandom Sequence Generator
	Blum integers
	BBS algorithm
	Bit-prediction
	Next-bit prediction
	Building a judge from a next-bit predictor

	Previous-bit prediction
	Security of BBS generator

