CPSC 467b: Cryptography and Computer Security Handout #4 Professor M. J. Fischer February 10, 2005 ## **Linear Congruence Equations** Let $a, x \in \mathbf{Z}_n^*$. Recall that x is said to be an *inverse* of a modulo n if $ax \equiv 1 \pmod{n}$. It is easily seen that the inverse, if it exists, is unique modulo n, for if $ax \equiv 1 \pmod{n}$ and $ay \equiv 1 \pmod{n}$, then $x \equiv xay \equiv y \pmod{n}$. We denote this unique x, when it exists, by $a^{-1} \pmod{n}$ (or simply a^{-1} when the modulus n is clear from context). **Theorem 1** Let $a \in \mathbf{Z}_n^*$. Then a^{-1} exists in \mathbf{Z}_n^* . **Proof:** Let $a \in \mathbf{Z}_n^*$ and consider the function $f_a(x) = ax \mod n$. f_a is easily shown to be a one-one mapping from \mathbf{Z}_n^* to \mathbf{Z}_n^* . Hence, f_a is also onto, so for some $x \in \mathbf{Z}_n^*$, $f_a(x) = 1$. Then $ax \equiv 1 \pmod n$, so $x = a^{-1} \pmod n$. We showed in class how to use the Extended Euclidian algorithm to efficiently compute $a^{-1} \pmod{n}$ given a and n. Here we consider the solvability of the more general linear congruence equation: $$ax \equiv b \pmod{n} \tag{1}$$ where $a, b \in \mathbf{Z}_n^*$ are constants, and x is a variable ranging over \mathbf{Z}_n^* . **Theorem 2** Let $a, b, n \in \mathbf{Z}_n^*$. Let $d = \gcd(a, n)$. If $d \mid b$ then $ax \equiv b \pmod{n}$ has d solutions x_0, \ldots, x_{d-1} , where $$x_t = \left(\frac{b}{d}\right)\bar{x} + \left(\frac{n}{d}\right)t\tag{2}$$ and $\bar{x} = (\frac{a}{d})^{-1} \pmod{(\frac{n}{d})}$. If $d \uparrow n$, then $ax \equiv b \pmod{n}$ has no solutions. **Proof:** Let $d = \gcd(a, n)$. Clearly if $ax \equiv b \pmod{n}$, then $d \mid b$, so there are no solutions if $d \nmid b$. Now suppose $d \mid b$. Since $\left(\frac{a}{d}\right)$ and $\left(\frac{n}{d}\right)$ are relatively prime, \bar{x} exists by Theorem 1. Multiplying both sides of (2) by a, we get $$ax_t = b\left(\frac{a}{d}\right)\bar{x} + n\left(\frac{a}{d}\right)t\tag{3}$$ where now we are working over the integers. But $\left(\frac{a}{d}\right)\bar{x}=1+\frac{kn}{d}$ for some k by the definition of \bar{x} , so substituting for $\left(\frac{a}{d}\right)\bar{x}$ in (3) yields $$ax_t = b + kn\left(\frac{b}{d}\right) + n\left(\frac{a}{d}\right)t\tag{4}$$ The quantities in parentheses are both integers, so it follows immediately that $ax_t \equiv b \pmod{n}$ and hence x_t is a solution of (1). It remains to show that the d solutions above are distinct modulo n. But this is obvious since $x_0 < x_1 < \ldots < x_{d-1}$ and $x_{d-1} - x_0 = \frac{n}{d}(d-1) < n$.