## Lecture Notes, Week 7

## 1 QR Probabilistic Cryptosystem

Let $n=p q, p, q$ distinct odd primes. We can divide the numbers in $\mathbf{Z}_{n}^{*}$ into four classes depending on their membership in $\mathrm{QR}_{p}$ and $\mathrm{QR}_{q} .{ }^{1}$ Let $Q_{n}^{11}$ be those numbers that are quadratic residues mod both $p$ and $q$; let $Q_{n}^{10}$ be those numbers that are quadratic residues $\bmod p$ but not $\bmod q$; let $Q_{n}^{01}$ be those numbers that are quadratic residues $\bmod q$ but not $\bmod p$; and let $Q_{n}^{00}$ be those numbers that are neither quadratic residues $\bmod p$ nor $\bmod q$. Under these definitions, $Q_{n}^{11}=\mathrm{QR}_{n}$ and $Q_{n}^{00} \cup Q_{n}^{01} \cup Q_{n}^{10}=\mathrm{QNR}_{n}$.

Fact Given $a \in Q_{n}^{00} \cup Q_{n}^{11}$, there is no known feasible algorithm for determining whether or not $a \in \mathrm{QR}_{n}$ that gives the correct answer significantly more than $1 / 2$ the time.

The Goldwasser-Micali cryptosystem is based on this fact. The public key consist of a pair $e=(n, y)$, where $n=p q$ for distinct odd primes $p, q$, and $y \in Q_{n}^{00}$. The private key consists of $p$. The message space is $\mathcal{M}=\{0,1\}$.

To encrypt $m \in \mathcal{M}$, Alice chooses a random $a \in \mathrm{QR}_{n}$. She does this by choosing a random member of $\mathbf{Z}_{n}^{*}$ and squaring it. If $m=0$, then $c=a \bmod n$. If $m=1$, then $c=a y \bmod n$. The ciphertext is $c$.

It is easily shown that if $m=0$, then $c \in Q_{n}^{11}$, and if $m=1$, then $c \in Q_{n}^{00}$. One can also show that every $a \in Q_{n}^{11}$ is equally likely to be chosen as the ciphertext in case $m=0$, and every $a \in Q_{n}^{00}$ is equally likely to be chosen as the ciphertext in case $m=1$. Eve's problem of determining whether $c$ encrypts 0 or 1 is the same as the problem of distinguishing between membership in $Q_{n}^{00}$ and $Q_{n}^{11}$, which by the above fact is believed to be hard. Anyone knowing the private key $p$, however, can use the Euler Criterion to quickly determine whether or not $c$ is a quadratic residue $\bmod p$ and hence whether $c \in Q_{n}^{11}$ or $c \in Q_{n}^{00}$, thereby determining $m$.

## 2 Legendre Symbol

Recall that $\mathrm{QR}_{n} \subseteq \mathbf{Z}_{n}^{*}$ is the set of quadratic residues (perfect squares) modulo $n$. Let $p$ be an odd prime, $a \in \mathbf{Z}_{p}$. The Legendre symbol $\left(\frac{a}{p}\right)$ is a number in $\{-1,0,+1\}$, defined as follows:

$$
\left(\frac{a}{p}\right)= \begin{cases}+1 & \text { if } a \in \mathrm{QR}_{p} \\ 0 & \text { if } p \mid a \\ -1 & \text { if } a \in \mathbf{Z}_{p}^{*}-\mathrm{QR}_{p}\end{cases}
$$

By the Euler Criterion (see lecture notes week 6, section 6.4), we have

[^0]Theorem 1 Let $p$ be an odd prime, $a \in \mathbf{Z}_{p}^{*}$. Then

$$
\left(\frac{a}{p}\right)=a^{\left(\frac{p-1}{2}\right)}(\bmod p)
$$

The Legendre symbol satisfies the following multiplicative property:
Fact Let $p$ be an odd prime, $a_{1}, a_{2} \in \mathbf{Z}_{p}^{*}$. Then

$$
\left(\frac{a_{1} a_{2}}{p}\right)=\left(\frac{a_{1}}{p}\right)\left(\frac{a_{2}}{p}\right)
$$

Not surprisingly, if $a_{1}$ and $a_{2}$ are both quadratic residues, then so is $a_{1} a_{2}$. This shows that the fact is true for the case that

$$
\left(\frac{a_{1}}{p}\right)=\left(\frac{a_{2}}{p}\right)=1
$$

More surprising is the case when neither $a_{1}$ nor $a_{2}$ are quadratic residues, so

$$
\left(\frac{a_{1}}{p}\right)=\left(\frac{a_{2}}{p}\right)=-1
$$

In this case, the above fact says that the product $a_{1} a_{2}$ is a quadratic residue since

$$
\left(\frac{a_{1} a_{2}}{p}\right)=(-1)(-1)=1
$$

Here's a way to see this. Let $g$ be a primitive root of $p$. Write $a_{1} \equiv g^{k_{1}}(\bmod p)$ and $a_{2} \equiv g^{k_{2}}$ $(\bmod p)$. Since $a_{1}$ and $a_{2}$ are not quadratic residues, it must be the case that $k_{1}$ and $k_{2}$ are both odd; otherwise $g^{k_{1} / 2}$ would be a square root of $a_{1}$, or $g^{k_{2} / 2}$ would be a square root of $a_{2}$. But then $k_{1}+k_{2}$ is even since the sum of any two odd numbers is always even. Hence, $g^{\left(k_{1}+k_{2}\right) / 2}$ is a square root of $a_{1} a_{2} \equiv g^{k_{1}+k_{2}}(\bmod p)$, so $a_{1} a_{2}$ is a quadratic residue.

## 3 Jacobi Symbol

The Jacobi symbol extends the Legendre symbol to the case where the "denominator" is an arbitrary odd positive number $n$ with prime factorization $\prod_{i=1}^{k} p_{i}{ }^{e_{i}}$.

### 3.1 Definition

We define

$$
\begin{equation*}
\left(\frac{a}{n}\right)=\prod_{i=1}^{k}\left(\frac{a}{p_{i}}\right)^{e_{i}} \tag{1}
\end{equation*}
$$

(By convention, this product is 1 when $k=0$, so $\left(\frac{a}{1}\right)=1$.) The symbol on the right side of (1) is the Legendre symbol, and the symbol on the left is the Jacobi symbol. Clearly, when $n=p$ is an odd prime, the Jacobi symbol and Legendre symbols agree, so the Jacobi symbol is a true extension of our earlier notion.

What does the Jacobi symbol mean when $n$ is not prime? If $\left(\frac{a}{n}\right)=-1$ then $a$ is definitely not a quadratic residue modulo $n$, but if $\left(\frac{a}{n}\right)=1$, $a$ might or might not be a quadratic residue. Consider the important case of $n=p q$ for $p, q$ distinct odd primes. Then

$$
\left(\frac{a}{n}\right)=\left(\frac{a}{p}\right)\left(\frac{a}{q}\right)
$$

so there are two possibilities for $\left(\frac{a}{n}\right)=1$ : either $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)=+1$ or $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)=-1$. In the first case, $a$ is a quadratic residue modulo both $p$ and $q$, so $a$ is a quadratic residue modulo $n$. In the second case, $a$ is not a quadratic residue modulo either $p$ or $q$, and it is not a quadratic residue modulo $n$, either. Such numbers $a$ are sometimes called "pseudo-squares" since they have Jacobi symbol 1 but are not quadratic residues.

### 3.2 Identities

The Jacobi symbol is easily computed using Equation 1 and Theorem 1 if the factorization of $n$ is known. Similarly, $\operatorname{gcd}(u, v)$ is easily computed if the factorizations of $u$ and $v$ are known. The Euclidean algorithm allows us to compute $\operatorname{gcd}(u, v)$ efficiently even without knowing the factors of $n$. A similar algorithm allows $\left(\frac{a}{n}\right)$ to be computed efficiently without knowing the factorization of $a$ or $n$.

The algorithm is based on identities satisfied by the Jacobi symbol:

1. $\left(\frac{0}{1}\right)=1 ;\left(\frac{0}{n}\right)=0$ for $n \neq 1$;
2. $\left(\frac{2}{n}\right)=1$ if $n \equiv \pm 1(\bmod 8) ;\left(\frac{2}{n}\right)=-1$ if $n \equiv \pm 3(\bmod 8)$;
3. $\left(\frac{a_{1}}{n}\right)=\left(\frac{a_{2}}{n}\right)$ if $a_{1} \equiv a_{2}(\bmod n)$;
4. $\left(\frac{2 a}{n}\right)=\left(\frac{2}{n}\right)\left(\frac{a}{n}\right)$;
5. $\left(\frac{a}{n}\right)=-\left(\frac{n}{a}\right)$ if $a \equiv n \equiv 3(\bmod 4)$.
6. $\left(\frac{a}{n}\right)=\left(\frac{n}{a}\right)$ if $a \equiv 1(\bmod 4)$ or $(a \equiv 3(\bmod 4)$ and $n \equiv 1(\bmod 4))$;

There are many ways to turn these identities into an algorithm. Below is a straightforward recursive approach. Slightly more efficient iterative implementations are also possible.

```
int jacobi(int a, int n)
/* Precondition: a, n >= 0; n is odd */
{
    if (a == 0) /* identity 1 */
        return (n==1) ? 1 : 0;
    if (a == 2) { /* identity 2 */
        switch (n%8) {
        case 1:
        case 7:
            return 1;
        case 3:
        case 5:
            return -1;
        }
    }
    if ( a >= n ) /* identity 3 */
        return jacobi(a%n, n);
    if (a%2 == 0) /* identity 4 */
        return jacobi(2,n)*jacobi(a/2, n);
    /* a is odd */ /* identities 5 and 6 */
```

```
    return (a%4 == 3 && n%4 == 3) ? -jacobi(n,a) : jacobi(n,a);
}
```


## 4 Strassen-Solovay Test of Compositeness

Recall that a test of compositeness for $n$ is a set of predicates $\left\{\tau_{a}(n)\right\}_{a \in \mathbf{Z}_{n}^{*}}$ such that if $\tau(n)$ succeeds (is true), then $n$ is composite. The Strassen-Solovay Test is the set of predicates $\left\{\nu_{a}(n)\right\}_{a \in \mathbf{Z}_{n}^{*}}$, where

$$
\nu_{a}(n)=\operatorname{true} \operatorname{iff}\left(\frac{a}{n}\right) \not \equiv a^{(n-1) / 2}(\bmod n) .
$$

If $n$ is prime, the test always fails by Theorem 1. Equivalently, if some $\nu_{a}(n)$ succeeds, then $n$ must be composite. Hence, the test is a valid- test of compositeness.

Let $b=a^{(n-1) / 2}$. There are two possible reasons why the test might succeed. One possibility is that $b^{2} \equiv a^{n-1} \not \equiv 1(\bmod n)$ in which case $b \not \equiv \pm 1(\bmod n)$. This is just the Fermat test $\zeta_{a}(n)$ from section 10.1 of lecture notes week 5 . A second possibility is that $a^{n-1} \equiv 1(\bmod n)$ but nevertheless, $b \not \equiv\left(\frac{a}{n}\right)(\bmod n)$. In this case, $b$ is a square root of $1(\bmod n)$, but it might have the opposite sign from $\left(\frac{a}{n}\right)$, or it might not even be $\pm 1$ since 1 has additional square roots when $n$ is composite. We claim without proof that for some constant $c>0$ and all composite numbers $n$, the probability that $\nu_{a}(n)$ succeeds for a randomly-chosen $a \in \mathbf{Z}_{n}^{*}$ is at least $c$. I believe that $c \geq 1 / 4$, but this fact must be checked.

## 5 Miller-Rabin Test of Compositeness

The Miller-Rabin Test is more complicated to describe than the Solovay-Strassen Test, but the probability of error (that is, the probability that it fails when $n$ is composite) seems to be lower than for Solovay-Strassen, so that the same degree of confidence can be achieved using fewer iterations of the test. This makes it faster when incorporated into a primality-testing algorithm. It is also closely related to the algorithm presented in lecture notes week 6 , section 1.3 for factoring an RSA modulus given the encryption and decryption keys.

### 5.1 The test

The test $\mu_{a}(n)$ is based on computing a sequence $b_{0}, b_{1}, \ldots, b_{k}$ of integers in $\mathbf{Z}_{n}^{*}$. If $n$ is prime, this sequence ends in 1 , and the last non- 1 element, if any, is $n-1(\equiv-1(\bmod n))$. If the observed sequence is not of this form, then $n$ is composite, and the Miller-Rabin Test succeeds. Otherwise, the test fails.

The sequence is computed as follows:

1. Write $n-1=2^{k} m$, where $m$ is an odd positive integer. Computationally, $k$ is the number of 0 's at the right (low-order) end of the binary expansion of $n$, and $m$ is the number that results from $n$ when the $k$ low-order 0's are removed.
2. Let $b_{0}=a^{m} \bmod n$.
3. For $i=1,2, \ldots, k$, let $b_{i}=\left(b_{i-1}\right)^{2} \bmod n$.

An easy inductive proof shows that $b_{i}=a^{2^{i} m} \bmod n$ for all $i, 0 \leq i \leq k$. In particular, $b_{k} \equiv$ $a^{2^{k} m}=a^{n-1}(\bmod n)$.

### 5.2 Validity

To see that the test is valid, we must show that $\mu_{a}(p)$ fails for all $a \in \mathbf{Z}_{p}^{*}$ when $p$ is prime. By Euler's theorem ${ }^{2}, a^{p-1} \equiv 1(\bmod p)$, so we see that $b_{k}=1$. Since 1 has only two square roots, 1 and -1 , modulo $p$, and $b_{i-1}$ is a square root of $b_{i}$ modulo $p$, the last non- 1 element in the sequence (if any) must be $-1 \bmod p$. This is exactly the condition for which the Miller-Rabin test fails. Hence, it fails whenever $n$ is prime, so if it succeeds, $n$ is indeed composite.

### 5.3 Accuracy

How likely is it to succeed when $n$ is composite? It succeeds whenever $a^{n-1} \not \equiv 1(\bmod n)$, so it succeeds whenever the Fermat test $\zeta_{a}(n)$ would succeed. (See lecture notes week 5, section 10.1.) But even when $a^{n-1} \equiv 1(\bmod n)$ and the Fermat test fails, the Miller-Rabin test will succeed if the last non- 1 element in the sequence of $b$ 's is one of the square roots of 1 other than $\pm 1$. It can be proved that $\mu_{a}(n)$ succeeds for at least $3 / 4$ of the possible values of $a$. Empirically, the test almost always succeeds when $n$ is composite, and one has to work to find $a$ such that $\mu_{a}(n)$ fails.

### 5.4 Example

For example, take $n=561=3 \cdot 11 \cdot 17$. This number is interesting because it is the first Carmichael number. A Carmichael number is an odd composite number $n$ that satisfies $a^{n-1} \equiv 1(\bmod n)$ for all $a \in \mathbf{Z}_{n}^{*}$. (See http://mathworld.wolfram.com/CarmichaelNumber.html.) These are the numbers that I have been calling "pseudoprimes". Let's go through the steps of computing $\mu_{37}(561)$.

We begin by finding $m$ and $k .561$ in binary is 1000110001 (a palindrome!). Then $n-1=$ $560=(1000110000)_{2}$, so $k=4$ and $m=(100011)_{2}=35$. We compute $b_{0}=a^{m}=37^{35} \bmod$ $561=265$ with the help of the computer. We now compute the sequence of $b$ 's, also with the help of the computer. The results are shown in the table below:

| $i$ | $b_{i}$ |
| :---: | ---: |
| 0 | 265 |
| 1 | 100 |
| 2 | 463 |
| 3 | 67 |
| 4 | 1 |

This sequence ends in 1 , but the last non-1 element $b_{3} \not \equiv-1(\bmod 561)$, so the test $\mu_{37}(561)$ succeeds. In fact, the test succeeds for every $a \in \mathbf{Z}_{561}^{*}$ except for $a=1,103,256,460,511$. For each of those values, $b_{0}=a^{m} \equiv 1(\bmod 561)$.

### 5.5 Optimization

In practice, one only wants to compute as many of the $b$ 's as necessary to determine whether or not the test succeeds. In particular, one can stop after computing $b_{i}$ if $b_{i} \equiv \pm 1(\bmod n)$. If $b_{i} \equiv-1$ $(\bmod n)$ and $i<k$, the test fails. If $b_{i} \equiv 1(\bmod n)$ and $i \geq 1$, the test succeeds. This is because we know in this case that $b_{i-1} \not \equiv-1(\bmod n)$, for if it were, the algorithm would have stopped after computing $b_{i-1}$.

[^1]
[^0]:    ${ }^{1}$ To be strictly formal, we classify $a \in \mathbf{Z}_{n}^{*}$ according to whether or not $(a \bmod p) \in \mathrm{QR}_{p}$ and whether or not $(a \bmod q) \in \mathrm{QR}_{q}$.

[^1]:    ${ }^{2}$ This is also called Fermat's little theorem.

