
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467b: Cryptography and Computer Security
Week 9 (rev. 2)

Professor M. J. Fischer March 22 & 24, 2005

Lecture Notes, Week 9

1 Common Hash Functions

Many cryptographic hash functions are currently in use. For example, the openssl library includes
implementations of MD2, MD4, MD5, MDC2, RIPEMD, SHA, SHA–1, SHA–256, SHA–384, and
SHA–512. The SHA–xxx methods are recommended for new applications, but these other functions
are also in widespread use.

1.1 SHA–1

The revised Secure Hash Algorithm (SHA–1) is one of four algorithms described in
U. S. Federal Information Processing Standard FIPS PUB 180–2 (Secure Hash Stan-
dard). (See http://csrc.nist.gov/publications/fips/fips180-2/
fips180-2withchangenotice.pdf.) It states,

“Secure hash algorithms are typically used with other cryptographic algorithms, such
as digital signature algorithms and keyed-hash message authentication codes, or in the
generation of random numbers (bits).”

SHA–1 produces a 160-bit message digest. The other algorithms in the SHA–xxx family produce
longer message digests.

1.2 MD5

MD5 is an older algorithm (1992) devised by Rivest. We present an overview of it here. It generates
a 128-bit message digest from an input message of any length. It is built from a basic block function
g : 128-bit× 512-bit→ 128-bit.

The MD5 hash function h is obtained as follows: First the original message is padded to length
a multiple of 512. The result m is split into a sequence of 512-bit blocks m1,m2, . . . ,mk. Finally,
h is computed by chaining g on the first argument.

We look at these steps in greater detail. As with block encryption, it is important that the padding
function be one-to-one, but for a different reason. For encryption, the one-to-one property is what
allows unique decryption. For a hash function, it prevents there from being trivial colliding pairs.
For example, if the last partial block is simply padded with 0’s, then all prefixes of the last message
block will become the same after padding and will therefore collide with each other.

The function h can be regarded as a state machine, where the states are 128-bit strings and the
inputs to the machine are 512-bit blocks. The machine starts in state s0, specified by an initialization
vector IV. Each input block mi takes the machine from state si−1 to new state si = g(si−1,mi).
The last state sk is the output of h, that is,

h(m1m2 . . .mk) = g(g(. . . g(g(IV,m1),m2) . . . ,mk−1),mk).

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf


2 CPSC 467b Lecture Notes, Week 9 (rev. 2)

The basic block function g(s, b) consists of 4 stages, each consisting of 16 substages. Recall
that b is 512-bits long, so we may divide b into 32-bit words b1b2 . . . b16. At stage i, substage j, a
permutation πi of {1, . . . , 16} is used to select word b`, where ` = πi(j). A new state is generated
by computing fi,j(s, b`), where s is the old state and fi,j is a bit-scrambling function that depends
on i and j. Since a state can be represented by four 32-bit words, the arguments to fi,j occupy only
5 machine words, which easily fit into the high-speed registers of modern processors.

2 Extending Fixed-Length Hash Functions

We now consider general hash functions and some techniques for manipulating them.

2.1 Doubling the Reduction Amount

Suppose we are given a particular fixed-length hash function h : 256-bits→ 128-bits. How can we
use h to compute a 128-bit strong collision-free hash of a 512-bit input block? We consider several
possible ways to extend h to a hash functionH : 512-bits→ 128-bits. In the following, we suppose
that m is 512-bits long, and we write m = m1m2, where m1 and m2 are 256 bits each.

Method 1 Define H(m) = H(m1m2) = h(m1) ⊕ h(m2). Unfortunately, this fails to be either
strong or weak collision-free since m′ = m2m1 always collides with m under H (except in
the special case that m1 = m2.

Method 2 Define H(m) = H(m1m2) = h(h(m1)h(m2)).
Theorem 1 The H of method 2 is strong collision-free assuming that the h from which it is
derived is strong collision-free.
Proof: Assume the contrary, that one can find a colliding pair (m,m′) for H . We show
that one can then find a colliding pair for h, contradicting the assumption that h is strong
collision-free.

Write m = m1m2 and m′ = m′1m
′
2 for 256-bit blocks m1,m2,m

′
1,m

′
2. Since m collides

with m′, we have that m 6= m′ but H(m) = H(m′). We consider two cases.

Case 1: h(m1) 6= h(m′1) or h(m2) 6= h(m′2). Let u = h(m1)h(m2) and u′ = h(m′1)h(m′2).
Then u 6= u′, but h(u) = H(m) = H(m′) = h(u′), so (u, u′) is a colliding pair for h.

Case 2: h(m1) = h(m′1) and h(m2) = h(m′2). Since m 6= m′, then either m1 6= m′1 or
m2 6= m′2 (or both). But then whichever pair is unequal is a colliding pair for h.

In either case, we have found a colliding pair for h, contradicting the assumption that h was
strong collision-free.

2.2 A General Chaining Method

Assume now that we have a hash function h : m-bits → t-bits, where m ≥ t + 2. In the above
example, m = 256 and t = 128. Divide the message m after appropriate padding into blocks
m1m2 . . .mk, each of length m− t− 1. Compute a sequence of t-bit states as follows:

s1 = h(0t0m1)
s2 = h(s11m2)

...
sk = h(sk−11mk).

Then H(m) = sk.



CPSC 467b Lecture Notes, Week 9 (rev. 2) 3

Theorem 2 Let H and h be the functions of section 2.2. Then H is strong collision-free assuming
that h is.

Proof: Assume to the contrary that H is not strong collision-free, so we are able to find a colliding
pair (m,m′) forH . We show how to find a colliding pair for h, contradicting the assumed collision-
freedom of h.

Let m = m1m2 . . .mk, let m′ = m′1m
′
2 . . .m

′
k′ , and let s1, . . . , sk and s′1, . . . , s

′
k′ be the

corresponding state sequences. We may assume without loss of generality that k ≤ k′. Because m
and m′ collide under H , we have sk = s′k′ . Let r be the least integer in {1, . . . , k} such that, for all
j ∈ {r, . . . , k}, we have sj = s′k′−k+j . Such an r exists since r = k is one value that works. We
proceed by cases:

Case 1: r = 1 and k = k′. Then sj = s′j for all j = 1, . . . , k. Because m 6= m′, there must be
some ` such that m` 6= m′`. If ` = 1, then (0t0m1, 0t0m′1) is a colliding pair for h. If ` > 1, then
(s`−11m`, s

′
`−11m′`) is a colliding pair for h.

Case 2: r = 1 and k < k′. Let u = k′ − k + r. Then s1 = s′u. Since u > 1 we have that

h(0t0m1) = s1 = s′u = h(s′u−11m′u),

so (0t0m1, s′u−11m′u) is a colliding pair for h. Note that this is true even if 0t = s′u−1 and
m1 = m′u, a possibility that we have not ruled out.

Case 3: r > 1. Then u = k′−k+r > 1. By the definition of r, we have sr = s′u, but sr−1 6= s′u−1

since r was chosen to be as small as possible. Hence,

h(sr−11mr) = sr = s′u = h(s′u−11m′u),

so (sr−11mr, s
′
u−11m′u) is a colliding pair for h.

In each case, we have found a colliding pair for h. The contradicts the assumption that h is
strong collision-free. Hence, H is also strong collision-free.

2.3 Hash Functions Do Not Always Look Random

Intuitively, we like to think of h(y) as being “random-looking”, with no obvious pattern. Indeed,
it would seem that obvious patterns and structure in h would provide a means of finding collisions,
violating the property of being strong-collision free. But this intuition is faulty, as I now show.

Suppose h is a strong collision-free hash function. Define H(x) = 0 · h(x). Clearly, H also
enjoys these same properties. If (x1, x2) is a colliding pair for H , then it is also a colliding pair for
h. Thus, H is strong collision-free, despite the fact that the string H(x) always begins with 0. Later
on, we will talk about how to make functions that truly do appear to be random (even though they
are not).

3 Birthday Attack

Recall that the MD5 hash function produces 128-bit values, whereas SDA–1 produces 160-bit val-
ues. How many bits do we need for security? Both 2128 and 2160 are more than large enough to
thwart a brute force attack that simply searches randomly for colliding pairs (m,m′). However,
the so-called Birthday Attack reduces the size of the search space to roughly the square root of the
original size. Thus, MD5 has roughly the same resistance to the birthday attack as a cryptosystem



4 CPSC 467b Lecture Notes, Week 9 (rev. 2)

with 64-bit keys would have to a brute force attack. Similarly, SHA–1’s effective size in terms of
birthday attack resistance is only 80-bits.1

The birthday attack is named for the birthday paradox. This is the fact that there is approxi-
mately a 50–50 chance that two people in a room of 23 strangers have the same birthday. There
is a nice description of this on the web at http://en.wikipedia.org/wiki/Birthday_
paradox. The probability of not having two people with the same birthday is is

q =
365
365
· 364

365
· · · 343

365
= 0.492703

Hence, the probability that (at least) two people have the same birthday is 1− q = 0.507297. This
probability grows quite rapidly with the number of people in the room. For example, with 46 people,
the probability that two share a birthday is 0.948253.

The birthday paradox can be applied to hash functions to yield a much faster way to find collid-
ing pairs than choosing pairs at random. The idea is to choose a random set of k messages and then
see if any two messages in the set collide. There are

(k
2

)

= k(k−1)/2 different pairs of messages in
a set of size k, so on can test this many pairs at a cost of only k evaluations of the hash function. Of
course, these

(k
2

)

pairs are not uniformly distributed, so one needs a birthday-paradox style analysis
of the probability that a colliding pair will be found. The general result is that the probability of
success is at least one half for k roughly the size of

√
n, where n is the size of the message space.

Two problems remain that make this attack difficult to use in practice. First, there is the problem
of finding duplicates in the list of hash values. That can be done in time O(k log k) by sorting the
list and then looking for adjacent equal elements. The more serious problem with this approach,
and with the birthday attack in general, is the amount of storage required. While carrying out 264

computational steps is almost on the verge of feasibility, finding that much storage is still way out of
the question, so MD5 and other 128-bit hash functions are still safe from this attack. Nevertheless,
the birthday attack is one of the more subtle ways that cryptographic primitives can be compromised.

4 Hash from Cryptosystem

We’ve already seen several cryptographic hash functions as well as methods for making new hash
functions from old. Here’s a way to make a hash function from a symmetric cryptosystem with
encryption function Ek(b). Assume that the key length and block length are the same. Let m be an
arbitrary length message. Pad it appropriately and divide it into block lengths appropriate for the
cryptosystem. Compute the following state sequence:

s0 = IV
s1 = f(s0,m1)

...
sk = f(sk−1,mk).

The output H(m) of the new hash function is sk. IV is an initial vector and f is a function built
from E. Some possibilities for f are

f1(s, b) = Es(b)⊕ b
f2(s, b) = Es(b)⊕ b⊕ s
f3(s, b) = Es(b⊕ s)⊕ b
f4(s, b) = Es(b⊕ s)⊕ b⊕ s

1A recent attack reported by Chinese researchers Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu (mostly from
Shandong University) have reduced this number to only 69-bits.

http://en.wikipedia.org/wiki/Birthday_paradox
http://en.wikipedia.org/wiki/Birthday_paradox


CPSC 467b Lecture Notes, Week 9 (rev. 2) 5

You should think about why these particular functions do or do not lead to a strong collision-free
hash function. For example, if k = 1 and f = f1, thenH1(b) = EIV (b)⊕b. EIV itself is one-to-one
(since it’s an encryption function), but what can we say about H1(b)? Indeed, if bad luck would
have it that EIV is the identity function, then H1(b) = 0 for all b, and all pairs of message blocks
collide!

5 Authentication Problem

The authentication problem is to identify who one is communicating with. For example, if Alice
and Bob are communicating over a network, then Bob would like to know that he is talking to Alice
and not to someone else on the network. Knowing the IP address or URL is not adequate since
Mallory might be in control of intermediate routers and name servers.

As with signature schemes, we need some way to differentiate the real Alice from other users
of the network. We generally do this by assuming that Alice possess some secret or password that
is not known to anyone else. Then Alice authenticates herself by proving that she knows the secret
password.

5.1 Passwords

Password mechanisms are widely used for authentication. In the usual form, Alice authenticates
herself by sending her password to Bob. Bob checks that it matches Alice’s password and grants
access. This is the scheme that is used for local logins to a computer and is also used for remote au-
thenticated telnet, ftp, rsh, and rlogin sessions. Such schemes have two major security weaknesses:

1. Except for local logins, the password is sent over the network in the clear. This exposes it to
various kinds of eavesdropping, ranging from ethernet packet sniffers on the LAN to corrupt
ISP’s and routers along the way. The real threat of password capture in this way is so great
that it is highly recommended that one never send a password over the internet in the clear.
Users of the old insecure Unix tools should switch to secure replacements such as ssh, slogin,
and scp, or kerberized versions of telnet and ftp.

Logins into web sites often use the SSL (Secure Socket Layer) protocol to encrypt the connec-
tion, making it safe to transmit passwords to the site, but some do not. Depending on how you
have it configured, your browser will warn you whenever you attempt to send unencrypted
data back to the server.

2. Even if the password reaches the server safely, it is no longer the case that Alice is the only
one who knows her password. Now the server also knows. This is no problem if the only
use of the password is to authenticate Alice to that particular server, but what it means is
that from then on, the server can impersonate Alice to any other service that uses the same
password.

Users these days may have accounts with dozens of different web sites. In order make the
task of remembering the user names and passwords on all those sites, one is tempted to use
the same user name-password pairs on all of them. But that means that anyone with access
to the password database on one site could log into Alice’s account on any of the other sites.
Typically the different sites have very differing sensitivity of the data they protect. An on-
line shopping site may only be protecting a customer’s shopping cart, whereas a banking site
allows access to a customer’s bank account.



6 CPSC 467b Lecture Notes, Week 9 (rev. 2)

My advice is to use a different password for each account. Of course, nobody can keep dozens
of different passwords straight, so the downside of my suggestion is that the passwords must
be written down and kept safe. If the primary paper on which they are written gets lost, then
one should have a backup copy so that one can go to all of the sites ASAP and change the
passwords (and learn if the site has been compromised).

The real problem with simple password schemes is that Alice is required to send her secrets to
other parties in order to use them. We will see in the next lecture authentication schemes that do not
require this.

5.2 Secure password storage

Another issue with traditional password authentication schemes is the necessity of storing the pass-
words on the server for later verification. The file in which the passwords are stored is obviously
highly sensitive. While operating system protections can (and should) be used to protect it, they are
not really sufficient. For one thing, legitimate sysadmins can access it and might conceivably use
the passwords found there to log into users’ accounts at other sites. Hackers who manage to break
into the computer and obtain root privileges could also do the same thing. Finally, files get copied
onto backup tapes that are not subject to the same system protections, so someone with access to a
backup tape could read everybody’s password from it.

Rather than store passwords in the clear, it is usual to store “encrypted” passwords, which really
means the hash value of the password under some cryptographic hash function. The authentication
function takes the cleartext password from the user, computes its hash value, and sees if that matches
the hashed value in the password file. Since the password does not contain the actual password, and
it is computationally difficult to invert a cryptographic hash function, knowledge of the hash value
does not allow an attacker to easily find the password.

5.3 Dictionary attacks

Nevertheless, access to the password file, even if only hashed passwords are stored, opens up the
possibility of a dictionary attack. The idea here is that many users choose weak passwords—words
that appear in an English dictionary or in other available sources of text. If one has access to
the password hashes of legitimate users on the computer (such as is contained in /etc/passwd
on Unix), an attacker can hash every word in the dictionary and then look for matches with the
password file entries. This attack is quite likely to succeed in compromising at least a few accounts
on a typical system. Even one compromised account is enough to allow the hacker to log into the
system as a legitimate user, from which other kinds of attacks are possible that cannot be carried out
from the outside.

A way to make dictionary attacks more expensive is to add salt to each password. Salt is
a random number that is attached to a user’s account and stored along with the user name and
hashed password in the password file. The hash function takes two arguments, the password and
salt, and produces a hash value. Because the salt is stored (in the clear) in the password file, the
user’s password can be easily verified. However, a particular password hashes in different ways
depending on the salt value. This means that a successful dictionary attack would have to encrypt
the entire dictionary with every possible salt value (or at least with every salt value that appeared in
the password file being attacked). This increases the cost of the attack by orders of magnitude.



CPSC 467b Lecture Notes, Week 9 (rev. 2) 7

6 Authentication While Preventing Impersonation

A fundamental problem with all of the password authentication schemes discussed so far is that
Alice reveals her secret to Bob every time she authenticates herself. This is fine in an environment
where she trusts Bob but not otherwise, for after authenticating herself once to Bob, then Bob can
in turn masquerade as Alice to others.

When neither Alice nor Bob trust each other, there are two requirements that must be met:

1. Bob wants to make sure that an impostor cannot successfully masquerade as Alice.

2. Alice wants to make sure that her secret remains secure.

At first sight these seem contradictory, but there actually are ways for Alice to prove her identity to
Bob without compromising her secret.

6.1 Challenge-response authentication protocols

In a challenge-response protocol, Bob presents Alice with a challenge that only the true Alice (some-
one knowing Alice’s secret) can answer. Alice answers the challenge and sends her answer to Bob,
who verifies that it is correct.

A challenge-response protocol can be built from a digital signature scheme (SA, VA) as shown
in Figure 1. (The same protocol can also be implemented using a symmetric cryptosystem with
shared key k.)

Alice Bob

1. r←− Choose random string r.

2. Compute s = SA(r) s−→ Check VA(r, s).

Figure 1: Simple challenge-response protocol.

The problem with this protocol is that it exposes Alice’s signature system to a chosen plaintext
attack. With this protocol, a malicious Bob can get Alice to sign any message of his choosing.
Among other things, this means that Alice had better have a different signing key for use with this
protocol than she uses to sign contracts.

While we hope our cryptosystems are resistant to chosen plaintext attacks, such attacks are very
powerful and are not easy to defend against. Anything we can do to limit exposure to such attacks
can only improve the security of the system.

We now look at some ways that Alice might limit Bob’s ability to carry out a chosen plaintext
attack. In the protocol of Figure 2, instead of signing a string r of Bob’s choice, Alice signs a string
r that is constructed from a part r1 chosen by Alice and a part r2 chosen by Bob. The idea is that

Alice Bob

1. Choose random string r1
r1−→

2. r2←− Choose random string r2.

3. Compute r = r1 ⊕ r2 Compute r = r1 ⊕ r2

4, Compute s = SA(r) s−→ Check VA(r, s).

Figure 2: Attempt to resist chosen plaintext attack: Alice goes first.



8 CPSC 467b Lecture Notes, Week 9 (rev. 2)

neither party be able to control r. Unfortunately, that idea does not work here because Bob gets r1

before choosing r2. Instead of choosing r2 randomly, a cheating Bob can choose r2 = r⊕r1, where
r is the string that he wants Alice to sign as part of his chosen plaintext attack on her cryptosystem.
Thus, the protocol of Figure 2 is no more secure against chosen plaintext attack than the simpler
protocol of Figure 1.

Another possibility is to choose the random strings in the other order—Bob chooses first and
then Alice—giving the protocol of Figure 3. Now Alice is the one who has complete control over r.

Alice Bob

1. r2←− Choose random string r2.

2. Choose random string r1
r1−→

3. Compute r = r1 ⊕ r2 Compute r = r1 ⊕ r2

4, Compute s = SA(r) s−→ Check VA(r, s).

Figure 3: Attempt to resist chosen plaintext attack: Bob goes first.

This indeed thwarts Bob’s chosen plaintext attack since r is completely random (i.e., all strings r
are equally likely). No matter how Bob chooses r2, Alice choice of a random string r1 ensures that
r is also random. Thus, Alice only signs random messages.

Unfortunately, the protocol of Figure 3 is totally insecure against active eavesdroppers. Suppose
Mallory listens to a legitimate execution of the protocol between Alice and Bob. From this, he
easily acquires a valid signed message (r0, s0). Now Mallory can impersonate Alice by choosing
r1 = r0 ⊕ r2 in step 2 and s = s0 in step 4. Bob computes r = r1 ⊕ r2 = r0 in step 3, so his
verification in step 4 succeeds.

Both of these protocols can be improved by letting r be r1 ·r2 (concatenation) instead of r1⊕r2.
That way, neither party has full control over r. This weakens Bob’s ability to launch a chosen
plaintext attack in the protocol of Figure 2, and it weakens Mallory’s ability to impersonate Alice in
the protocol of Figure 3. A still better idea might be to let r = h(r1 · r2), where h is a cryptographic
hash function, since this further weakens the control that either party has on the choice of r.

7 Feige-Fiat-Shamir Authentication Protocol

In all of the challenge-response protocols above, Alice releases some partial information about
her secret by producing signatures that Bob could not compute by himself. As we will see, the
Feige-Fiat-Shamir protocol allows Alice to prove knowledge of her secret without revealing any
information about the secret itself. Such protocols are called zero knowledge, which we will discuss
in subsequent lectures.

The Feige-Fiat-Shamir protocol is based on the difficulty of computing square roots modulo
composite numbers. Alice chooses n = pq, where p and q are distinct large primes. Next she picks
a quadratic residue v ∈ QRn (which she can easily do by choosing a random element u and letting
v = u2 mod n). Finally, she chooses s to be the smallest square root of v−1 (mod n).2 She can
do this since she knows the factorization of n. She makes n and v public and keeps s private.

Alice authenticates herself by successfully completing a protocol that requires knowledge of s.
We present a simplified version of the protocol in Figure 4. In a single round of the protocol, Bob
has at least a 50% chance of catching an impostor Mallory. By repeating the protocol t times, the

2Note that if v is a quadratic residue, then so is v−1 (mod n).



CPSC 467b Lecture Notes, Week 9 (rev. 2) 9

error probability (that is, the probability that Bob fails to catch Mallory) drops to 1/2t. This can be
made acceptably low by choosing t to be large enough. For example, if t = 20, then Mallory has
only one chance in a million of successfully impersonating Alice.

Alice Bob

1. Choose random r ∈ Zn.
Compute x = r2 mod n. x−→

2. b←− Choose random b ∈ {0, 1}.
3. Compute y = rsb mod n.

y−→ Check x = y2vb mod n.

Figure 4: One round of the simplified Feige-Fiat-Shamir authentication protocol.

To see that this works when both parties are honest, we just have to verify that

x = y2vb mod n. (1)

But this follows since

y2vb ≡ (rsb)2vb ≡ r2(s2v)b ≡ x(v−1v)b ≡ x (mod n).

7.1 Cheating Alice

We now turn to the security properties of the protocol when Alice is dishonest, that is, when a party
Mallory is attempting to impersonate Alice.

Theorem 3 Consider one round of the Feige-Fiat-Shamir protocol of Figure 4. Suppose Mallory,
who is attempting to impersonate Alice, doesn’t know a square root of v−1. Then Bob’s verification
will fail with probability at least 1/2.

Proof: In order for Mallory to successfully fool Bob, he must come up with x in step 1 and y in
step 3 satisfying (1). He does not know which value b Bob will choose when he is sends x in step 1.
Let yb be the string that Mallory sends to Bob in response to query b. We consider two cases.

Case 1: There is at least one b ∈ {0, 1} for which yb fails to satisfy (1). Since b = 0 and b = 1 each
occur with probability 1/2, this means that Bob’s verification will fail with probability at least 1/2,
as desired.

Case 2: y0 and y1 both satisfy (1) (for their respective values of b), so we have

x = y2
0 mod n

and
x = y2

1v mod n.

We can solve these equations for v−1 to get

v−1 ≡ y2
1y
−2
0 (mod n)

But then y1y
−1
0 mod n is a square root of v−1. Since Mallory was able to compute both y1 and y0,

then he was also able to compute a square root of v−1, contradicting the assumption that he doesn’t
“know” a square root of v−1.



10 CPSC 467b Lecture Notes, Week 9 (rev. 2)

We remark that it is possible for Mallory to cheat with success probability 1/2. Here’s what he
does. He guesses the bit b that Bob will send him in step 2. He then generates a pair (x, y). If he
guesses b = 0, then he chooses x = r2 mod n and y = r mod n, just as Alice would have. If he
guesses b = 1, then he chooses y arbitrarily and x = y2v mod n. He then sends x in step 1 and y
in step 3. The pair (x, y) passes Bob’s check if Mallory’s guess of b turns out to be correct, which
will happen probability 1/2.

7.2 Cheating Bob

We now consider the case of a dishonest Mallory impersonating Bob. Alice would like assurance
that if she follows the protocol, her secret is protected, regardless of what Bob does.

Consider what Mallory knows at the end of the protocol. If he sent b = 0 in step 2, then he ends
up with a pair (x, y), where x is a random number and y is its square modulo n. Neither of these
numbers depend in any way on Alice secret s, so it’s intuitively obvious that this gives Mallory no
direct information about s. It’s also of no conceivable use to Mallory in trying to find s by other
means, for he can compute such pairs by himself without involving Alice. If having such pairs
allows him find a square root of v−1, then he was already able to compute square roots, contrary to
the assumption that finding square roots modulo n is difficult.

Instead, suppose Mallory sent b = 1 in step 2. Now he ends up with the pair (x, y), where
x = r2 mod n and y = rs mod n. While y might seem to give information about s, observe that y
itself is just a random element of Zn. This is because r is random, and the mapping r → rs mod n
is one-to-one for all s ∈ Z∗n. Hence, as r ranges through all possible values, so does rs mod n.
What does Mallory learn from x? Nothing that he could not have computed himself knowing y, for
x = y2v mod n. So again, all he ends up with is a random number (y in this case) and a quadratic
residue that he can compute knowing y.

In both cases, Mallory ends up with information that he could have computed without interacting
with Alice. Hence, if he could have discovered Alice’s secret by talking to Alice, then he could have
also done so on his own, contradicting the hardness assumption for computing square roots. This is
the sense in which Alice’s protocol releases zero knowledge about her secret.


	Common Hash Functions
	SHA--1
	MD5

	Extending Fixed-Length Hash Functions
	Doubling the Reduction Amount
	A General Chaining Method
	Hash Functions Do Not Always Look Random

	Birthday Attack
	Hash from Cryptosystem
	Authentication Problem
	Passwords
	Secure password storage
	Dictionary attacks

	Authentication While Preventing Impersonation
	Challenge-response authentication protocols

	Feige-Fiat-Shamir Authentication Protocol
	Cheating Alice
	Cheating Bob


