Solutions to Problem Set 3

Note: Each question counts 10 points.

Problem 6: Chinese remainder theorem

Solve the following system of equations for x :

$$
\begin{aligned}
& x \equiv 1(\bmod 5) \\
& x \equiv 4(\bmod 11) \\
& x \equiv 3(\bmod 17)
\end{aligned}
$$

Solution: Because $n_{1}=5, n_{2}=11$ and $n_{3}=17$ are pairwise relatively prime positive integers, we can apply Chinese Remainder Theorem directly, where $a_{1}=1, a_{2}=4$, and $a_{3}=3$:

$$
\begin{aligned}
& n=\Pi_{i=1}^{3} n_{i}=935 \\
& N_{1}=n / n_{1}=187, M_{1} \equiv N_{1}^{-1} \equiv 3\left(\bmod n_{1}\right) \\
& N_{2}=n / n_{2}=85, M_{2} \equiv N_{2}^{-1} \equiv 7\left(\bmod n_{2}\right) \\
& N_{3}=n / n_{3}=55, M_{3} \equiv N_{3}^{-1} \equiv 13\left(\bmod n_{3}\right) \\
& x=\left(\sum_{i=1}^{3} a_{i} M_{i} N_{i}\right) \equiv 411(\bmod n) .
\end{aligned}
$$

This answer is easily verified by computing $411 \bmod n_{i}$ for $i=1,2,3$.

Problem 7: Primitive roots

(a) Give a formula for the number of primitive roots of p when p is prime, and evaluate this formula for $p=11$ and $p=23$.
(b) Find all primitive roots of p, for $p=11$ and $p=23$. You may use a computer.

Solution:

(a) The number of primitive roots of prime p is $\phi(\phi(p))$. So $\phi(\phi(11))=\phi(10)=4$ and $\phi(\phi(23))=\phi(22)=10$.
(b) We can use the Lucas test to find all the primitive roots of p as in the following program:

```
#include <lnv3/lnv3.h>
#include <nttl/gcd.h>
#include <nttl/randomPrime.h>
#include <nttl/inverse.h>
#include <stdio.h>
main(int argc, char** argv) {
    ln x, p,P_1,q;
    int i,prime=11;
    prime = ((argc > 1) ? atoi(argv[1]):prime);
```

```
p = (ln) prime;
p_1 = p -1;
bool test;
for(x=1 ; x < p; x++) {
test = true;
for(i=2; i < p;i++){
    if(p_1 % i == 0) {
                q = p_1/i;
                if(x.FastExp (q,p)== 1) {test=false;break;}
    }
}
    if(test) cout<< x << " is a primitive root" <<endl;
}
```

\}

So, the primitive roots for 11 are $\{2,6,7,8\}$. The primitive roots for 23 are $\{5,7,10,11,14,15,17,19,20,21\}$.

Problem 8: Square roots

Find all square roots of 1 modulo 77 . Again, you may use the computer.

Solution: You can write a program to solve this. Here, we show how to find the square roots of 1 without using a computer. We notice that $n=p \times q=7 \times 11$, and p and q are primes. So $a \in \mathrm{QR}_{77}$ has exactly four square roots in \mathbf{Z}_{77}^{*}. Let b is one of the square roots, i.e. $b^{2} \equiv 1(\bmod 77)$. So $b^{2} \equiv 1(\bmod 7)$ and $b^{2} \equiv 1(\bmod 11)$. So b must be a square root of 1 in both \mathbf{Z}_{7}^{*} and \mathbf{Z}_{11}^{*}. Now we know that $\{(1,1),(-1,-1),(1,-1),(-1,1)\}$ are four such elements in $\mathbf{Z}_{7}^{*} \times \mathbf{Z}_{11}^{*}$. These correspond to $\{1,76,43,34\} \in \mathbf{Z}_{77}^{*}$ by the Chinese Remainder Theorem.

