Problem Set 5

Due in class on Tuesday, April 5, 2005.

Problem 15: Authenticated Broadcasting

User A is broadcasting packets to n recipients B_{1}, \ldots, B_{n}. Privacy is not important but integrity is. Each of B_{1}, \ldots, B_{n} wants to be assured that the packets he is receiving were sent by A. They decide to use a MAC.
(a) Suppose A and B_{1}, \ldots, B_{n} all share a secret key k. User A adds a MAC to every packet she sends using k, which each user B_{i} can verify. In at most two sentences, explain why this scheme is insecure. Namely, show that user B_{1} is not assured that packets he is receiving are from A.
(b) Suppose user A has a set $S=\left\{k_{1}, \ldots, k_{m}\right\}$ of m secret keys. Each user B_{i} has some subset $S_{i} \subseteq S$ of the keys. When A transmits a packet, she computes the MAC ξ_{i} of the packet for each key k_{i} and sends along all of the MACs ξ_{1}, \ldots, ξ_{m}. When user B_{i} receives a packet he accepts it as valid only if all MACs corresponding to keys in S_{i} are valid. What property should the sets S_{1}, \ldots, S_{n} satisfy so that the attack from part (a) does not apply? We are assuming all users B_{1}, \ldots, B_{n} are sufficiently far apart so that they cannot collude.
(c) Show that when $n=6$ (i.e., six recipients) the broadcaster A need only append 4 MACs to every packet to satisfy the condition of part (b). Describe the sets $S_{1}, \ldots, S_{6} \subseteq\left\{k_{1}, \ldots, k_{4}\right\}$ you would use.

Problem 16: Combining Signatures and Encryption

Let $\left(S_{A}, V_{A}\right)$ be Alice's digital signature scheme, and let $\left(E_{B}, D_{B}\right)$ be Bob's public key encryption scheme. Alice wants to send a private signed message m to Bob. She thinks of several possible ways to proceed:
i. Encrypted signed message: Alice sends $E_{B}\left(\left\langle m, S_{A}(m)\right\rangle\right)$ to Bob.
ii. Signed encrypted message: Alice sends $\left\langle E_{B}(m), S_{A}\left(E_{B}(m)\right\rangle\right.$ to Bob.
iii. Hybrid scheme: Alice sends $\left\langle E_{B}(m), S_{A}(m)\right\rangle$ to Bob.
(The notation $\langle x, y\rangle$ denotes the ordered pair (x, y), suitably encoded as a string.)
(a) For each scheme, describe how Bob decodes the message and verifies the signature.
(b) Alice comes to you for a recommendation of which scheme to use. Your job is to write a brief report giving your best professional advice to her. You should consider in your report any aspects that you feel would be important in practice, e.g., overall security and reliability of each scheme, possibility of known or unanticipated attacks, efficiency of implementation, and so forth.

Problem 17: Strong Collision-Free Hash Functions

Let h be a given strong collision-free hash function that maps bitstrings of length $2 n$ to bitstrings of length n. We wish to construct a new strong collision-free hash function that maps bitstrings of length $4 n$ to bitstrings of length n. Write $x=x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4}$, where each x_{i} has length n. Consider the following candidates:
i. $h_{1}(x)=h\left(\left(x_{1} \oplus x_{2}\right) \cdot\left(x_{3} \oplus x_{4}\right)\right)$.
ii. $h_{2}(x)=h\left(h\left(x_{1} \cdot x_{2}\right) \cdot h\left(x_{3} \cdot x_{4}\right)\right)$.
iii. $h_{3}(x)=h\left(x_{1} \cdot x_{2}\right) \oplus h\left(x_{3} \cdot x_{4}\right)$.
iv. $h_{4}(x)=h\left(h\left(h\left(x_{1} \cdot x_{2}\right) \cdot x_{3}\right) \cdot x_{4}\right)$.
(Here, " \oplus " denotes bitwise exclusive-or and "." denotes concatenation.)
For each function h_{i}, say whether or not you think it is a strong collision-free hash function. If you think it is, show that the ability to find collisions for h_{i} would allow one to find collisions for h (contradicting the assumption that h is a strong collision-free hash function). If you think it is not, exhibit a pair of (distinct) colliding words for h_{i}.

