YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
CPSC 467b: Cryptography and Computer Security Handout \#17 (vers. 2)
Professor M. J. Fischer
April 8, 2005

## Problem Set 6

Due by 5:30 pm on Friday, April 15, 2005.
Problems 18 and 19 refer to the zero knowledge interactive proof of three-colorability described below.

Let $G$ be an undirected graph. A 3-coloring of $G$ is a mapping $\chi$ from the vertices of $G$ to the set of "colors" $\{1,2,3\}$ such that for all edges $\{u, v\}$ in $G, \chi(u) \neq \chi(v)$. In words, $\chi$ describes a coloring of the vertices using three colors such that the two ends of every edge are colored differently. There is no known polynomial-time algorithm for determining if a given graph $G$ is 3-colorable or for finding a 3 -coloring if one exists.

Consider the following protocol. Alice has a 3-colorable graph $G$ for which she knows a 3coloring $\chi$. She wants to convince Bob that she knows a 3-coloring of $G$ without revealing what the 3 -coloring is. They proceed as follows:
(a) Alice chooses a random permutation $\pi:\{1,2,3\} \rightarrow\{1,2,3\}$ and constructs a new 3-coloring $\chi^{\prime}(v)=\pi(\chi(v))$. For each vertex $v$ in $G$, she commits to the color $\chi^{\prime}(v)$ by using a bitcommitment protocol. She sends the commitments for all vertices to Bob.
(b) Bob choose an edge $\{u, v\}$ of $G$ at random and sends it to Alice.
(c) Alice reveals the colors $\chi^{\prime}(u)$ and $\chi^{\prime}(v)$ to Bob using the reveal protocol.
(d) Bob checks that $\chi^{\prime}(u)$ and $\chi^{\prime}(v)$ were revealed correctly and that $\chi^{\prime}(u) \neq \chi^{\prime}(v)$. He accepts if all checks are okay.

As usual, this protocol is iterated many times.

## Problem 18: (Probability that Cheating Alice Escapes Detection)

Suppose Alice is dishonest and does not really know a 3-coloring of $G$. (This means that however she tries to color the graph, she always ends up with at least one edge for which both ends are colored the same.) Assume $G$ has $n$ vertices and $e$ edges. What is the maximum probability by which Alice can make Bob accept in a single iteration of the protocol? Explain how you derive this number?

## Problem 19: (Effects of Non-Randomness in Alice's Protocol)

Suppose now Alice is honest, but her random number generator is faulty so that the six permutations $\pi:\{1,2,3\} \rightarrow\{1,2,3\}$ are not equally likely. For definiteness, suppose that the identity permutation gets chosen half the time and the other five permutations each get chosen with probability $1 / 10$. Explain how a dishonest Bob can discover $\chi$ with high probability after sufficiently many iterations of the protocol.

## Problem 20: (Secret-Sharing)

Consider a $(3,10)$ Shamir secret-sharing scheme over $\mathbf{Z}_{p}$ for some large prime $p$. That is, a secret $s \in \mathbf{Z}_{p}$ is split into 10 shares, any three of which allow for its recovery, but no pair of shares gives any information about $s$. Suppose an adversary corrupts one of the 10 shares, but nobody knows which share is bad.
(a) Describe a method to recover $s$ given all 10 shares and explain why it works.
(b) Let $\tau^{\prime}$ be the smallest number such that $\tau^{\prime}$ shares are always sufficient to recover $s$. How big is $\tau^{\prime}$ ? Explain.
(c) Is it the case that any collection of fewer than $\tau^{\prime}$ shares gives no information about $s$ ? Why or why not?

