
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467b: Cryptography and Computer Security Handout #18
Professor M. J. Fischer April 15, 2005

Pseudorandom Sequence Generation

1 Distinguishability and Bit Prediction

Let D be a probability distribution on a finite set Ω. Then D associates a probability PD(ω) with
each each element ω ∈ Ω. We will also regard D as a random variable that ranges over Ω and
assumes value ω ∈ Ω with probability PD(ω).

Definition: An (S, `)-pseudorandom sequence generator (PRSG) is a function f :S → {0, 1}`.
(We generally assume 2` � |S|.) More properly speaking, a PRSG is a randomness amplifier.
Given a random, uniformly distributed seed s ∈ S, the PRSG yields the pseudorandom sequence
z = f(s). We use S also to denote the uniform distribution on seeds, and we denote the induced
probability distribution on pseudorandom sequences by f(S).

The goal of an (S, `)-PRSG is to generate sequences that “look random”, that is, are com-
putationally indistinguishable from sequences drawn from the uniform distribution U on length-`
sequences. Informally, a probabilistic algorithm A that always halts “distinguishes” X from Y if
its output distribution is “noticeably differently” depending whether its input is drawn at random
from X or from Y . Formally, there are many different kinds of distinguishably. In the following
definition, the only aspect of A’s behavior that matters is whether or not it outputs “1”.

Definition: Let ε > 0, let X , Y be distributions on {0, 1}`, and let A be a probabilistic algorithm.
Algorithm A naturally induces probability distributions A(X) and A(Y) on the set of possible
outcomes of A. We say that A ε-distinguishes X and Y if

|prob[A(X) = 1]− prob[A(Y) = 1]| ≥ ε,

and we say X and Y are ε-indistinguishable by A if A does not distinguish them.

A natural notion of randomness for PRSG’s is that the next bit should be unpredictable given all
of the bits that have been generated so far.

Definition: Let ε > 0 and 1 ≤ i ≤ `. A probabilistic algorithm Ni is an ε-next bit predictor for bit
i of f if

prob[Ni(Z1, . . . , Zi−1) = Zi] ≥
1
2

+ ε

where (Z1, . . . , Z`) is distributed according to f(S).

A still stronger notion of randomness for PRSG’s is that each bit i should be unpredictable, even
if one is given all of the bits in the sequence except for bit i.

Definition: Let ε > 0 and 1 ≤ i ≤ `. A probabilistic algorithm Bi is an ε-strong bit predictor for
bit i of f if

prob[Bi(Z1, . . . , Zi−1, Zi+1, . . . , Z`) = Zi] ≥
1
2

+ ε

where (Z1, . . . , Z`) is distributed according to f(S).

2 Pseudorandom Sequence Generation

The close relationship between distinguishability and the two kinds of bit prediction is estab-
lished in the following theorems.

Theorem 1 Suppose ε > 0 and Ni is an ε-next bit predictor for bit i of f . Then algorithm Bi is an
ε-strong bit predictor for bit i of f , where algorithm Bi(z1, . . . , zi−1, zi+1, . . . , z`) simply ignores
its last `− i inputs and computes Ni(z1, . . . , zi−1).

Proof: Obvious from the definitions.

Let x = (x1, . . . , x`) be a vector. We define xi to be the result of deleting the ith element of x,
that is, xi = (x1, . . . , xi−1, xi+1, . . . , x`).

Theorem 2 Suppose ε > 0 and Bi is an ε-strong bit predictor for bit i of f . Then algorithm A
ε-distinguishes f(S) and U , where algorithm A on input x outputs 1 if Bi(xi) = xi and outputs 0
otherwise.

Proof: By definition of A, A(x) = 1 precisely when Bi(xi) = xi. Hence, prob[A(f(S)) =
1] ≥ 1/2 + ε. On the other hand, for r = U , prob[Bi(ri) = ri] = 1/2 since ri is a uniformly
distributed bivalued random variable that is independent of ri. Thus, prob[A(U) = 1] = 1/2, so A
ε-distinguishes f(S) and U .

For the final step in the 3-way equivalence, we have to weaken the error bound.

Theorem 3 Suppose ε > 0 and algorithm A ε-distinguishes f(S) and U . For each 1 ≤ i ≤ ` and
c ∈ {0, 1}, define algorithm N c

i (z1, . . . , zi−1) as follows:

1. Flip coins to generate `− i+ 1 random bits ri, . . . , r`.

2. Let v =

{

1 if A(z1, . . . , zi−1, ri, . . . , r`) = 1;
0 otherwise.

3. Output v ⊕ ri ⊕ c.

Then there exist m and c for which algorithm N c
m is an ε/`-next bit predictor for bit m of f .

Proof: Let (Z1, . . . , Z`) = f(S) and (R1, . . . , R`) = U be random variables, and let Di =
(Z1, . . . , Zi, Ri+1, . . . , R`). Di is the distribution on `-bit sequences that results from choosing
the first i bits according to f(S) and choosing the last ` − i bits uniformly. Clearly D0 = U and
D` = f(S).

Let pi = prob[A(Di) = 1], 0 ≤ i ≤ `. SinceA ε-distinguishesD` andD0, we have |p`−p0| ≥
ε. Hence, there existsm, 1 ≤ m ≤ `, such that |pm−pm−1| ≥ ε/`. We show that the probability that
N c
m correctly predicts bitm for f is 1/2+(pm−pm−1) if c = 1 and 1/2+(pm−1−pm) if c = 0. It

will follow that eitherN0
m orN1

m correctly predicts bitmwith probability 1/2+|pm−pm−1| ≥ ε/`.
Consider the following experiments. In each, we choose an `-tuple (z1, . . . , z`) according to

f(S) and an `-tuple (r1, . . . , r`) according to U .

Experiment E0: Succeed if A(z1, . . . , zm−1, zm , rm+1, . . . , r`) = 1.

Experiment E1: Succeed if A(z1, . . . , zm−1, ¬zm , rm+1, . . . , r`) = 1.

Experiment E2: Succeed if A(z1, . . . , zm−1, rm , rm+1, . . . , r`) = 1.

Handout #18—April 15, 2005 3

Let qj be the probability that experiment Ej succeeds, where j = 0, 1, 2. Clearly q2 = (q0 + q1)/2
since rm = zm is equally likely as rm = ¬zm.

Now, the inputs to A in experiment E0 are distributed according to Dm, so pm = q0. Also, the
inputs to A in experiment E2 are distributed according to Dm−1, so pm−1 = q2. Differencing, we
get pm − pm−1 = q0 − q2 = (q0 − q1)/2.

We now analyze the probability that N c
m correctly predicts bit m of f(S). Assume without loss

of generality that A’s output is in {0, 1}. A particular run of N c
m(z1, . . . , zm−1) correctly predicts

zm if
A(z1, . . . , zm−1, rm , . . . , r`)⊕ rm ⊕ c = zm (1)

If rm = zm, (1) simplifies to

A(z1, . . . , zm−1, zm , . . . , r`) = c, (2)

and if rm = ¬zm, (1) simplifies to

A(z1, . . . , zm−1, ¬zm , . . . , r`) = ¬c. (3)

Let OKc
m be the event that N c

m(Z1, . . . , Zm−1) = Zm, i.e., that N c
m correctly predicts bit m for

f . From (2), it follows that

prob[OKc
m | Rm = Zm] =

{

q0 if c = 1
(1− q0) if c = 0

for in that case the inputs to A are distributed according to experiment E0. Similarly, from (3), it
follows that

prob[OKc
m | Rm = ¬Zm] =

{

q1 if ¬c = 1
(1− q1) if ¬c = 0

for in that case the inputs to A are distributed according to experiment E1. Since prob[Rm =
Zm] = prob[Rm = ¬Zm] = 1/2, we have

prob[OKc
m] =

1
2
· prob[OKc

m | Rm = Zm] +
1
2
· prob[OKc

m | Rm = ¬Zm]

=

{

q0/2 + (1− q1)/2 = 1/2 + pm − pm−1 if c = 1
q1/2 + (1− q0)/2 = 1/2 + pm−1 − pm if c = 0.

Thus, prob[OKc
m] = 1/2 + |pm − pm−1| ≥ ε/` for some c ∈ {0, 1}, as desired.

2 BBS Generator

We now give a PRSG due to Blum, Blum, and Shub for which the problem distinguishing its outputs
from the uniform distribution is closely related to the difficulty of determining whether a number
with Jacobi symbol 1 is a quadratic residue modulo a certain kind of composite number called a
Blum integer. The latter problem is believed to be computationally hard. First some background.

A Blum prime is a prime number p such that p ≡ 3 (mod 4). A Blum integer is a number
n = pq, where p and q are Blum primes. Blum primes and Blum integers have the important
property that every quadratic residue a has a square root y which is itself a quadratic residue. We
call such a y a principal square root of a and denote it by

√
a.

4 Pseudorandom Sequence Generation

Lemma 4 Let p be a Blum prime, and let a be a quadratic residue modulo p. Then y =
a(p+1)/4 mod p is a principal square root of a modulo p.

Proof: We must show that, modulo p, y is a square root of a and y is a quadratic residue. By
the Euler criterion [Theorem 2, handout 15], since a is a quadratic residue modulo p, we have
a(p−1)/2 ≡ 1 (mod p). Hence, y2 ≡ (a(p+1)/4)2 ≡ aa(p−1)/2 ≡ a (mod p), so y is a square root
of a modulo p. Applying the Euler criterion now to y, we have

y(p−1)/2 ≡
(

a(p+1)/4
)(p−1)/2

≡
(

a(p−1)/2
)(p+1)/4

≡ 1(p+1)/4 ≡ 1 (mod p).

Hence, y is a quadratic residue modulo p.

Theorem 5 Let n = pq be a Blum integer, and let a be a quadratic residue modulo n. Then a has
four square roots modulo n, exactly one of which is a principal square root.

Proof: By Lemma 4, a has a principal square root umodulo p and a principal square root v modulo
q. Using the Chinese remainder theorem, we can find x that solves the equations

x ≡ ±u (mod p)
x ≡ ±v (mod q)

for each of the four choices of signs in the two equations, yielding 4 square roots of a modulo n. It
is easily shown that the x that results from the +,+ choice is a quadratic residue modulo n, and the
others are not.

From Theorem 4, it follows that the mapping b 7→ b2 mod n is a bijection from the set of
quadratic residues modulo n onto itself. (A bijection is a function that is 1–1 and onto.)

Definition: The Blum-Blum-Shub generator BBS is defined by a Blum integer n = pq and an
integer `. It is a (Z∗n, `)-PRSG defined as follows: Given a seed s0 ∈ Z∗n, we define a se-
quence s1, s2, s3, . . . , s`, where si = s2

i−1 mod n for i = 1, . . . , `. The `-bit output sequence
is b1, b2, b3, . . . , b` , where bi = si mod 2.

Note that any sm uniquely determines the entire sequence s1, . . . , s` and corresponding output
bits. Clearly, sm determines sm+1 since sm+1 = s2

m mod n. But likewise, sm determines sm−1

since sm−1 =
√
sm , the principal square root of sm modulo n, which is unique by Theorem 5.

3 Security of BBS

Theorem 6 Suppose there is a probabilistic algorithm A that ε-distinguishes BBS(Z∗n) from U .
Then there is a probabilistic algorithm Q(x) that correctly determines with probability at least
ε′ = ε/` whether or not an input x ∈ Z∗n with Jacobi symbol

(

x
n

)

= 1 is a quadratic residue
modulo n.

Proof: From A, one easily constructs an algorithm Â that reverses its input and then applies A.
Â ε-distinguishes the reverse of BBS(Z∗n) from U . By Theorem 3, there is an ε′-next bit predictor
Nm for bit ` −m + 1 of BBS reversed. Thus, Nm(b`, b`−1, . . . , bm+1) correctly outputs bm with
probability at least 1/2 + ε′, where (b1, . . . , b`) is the (unreversed) output from BBS(Z∗n).

Handout #18—April 15, 2005 5

We now describe algorithm Q(x), assuming x ∈ Z∗n and
(

x
n

)

= 1. Using x as a seed, compute
(b1, . . . , b`) = BBS(x) and let b = Nm(b`−m, b`−m−1, . . . , b1). Output “quadratic residue” if
b = x mod 2 and “non-residue” otherwise.

To see that this works, observe first that Nm(b`−m, b`−m−1, . . . , b1) correctly predicts b0 with
probability at least 1/2+ε′, where b0 = (

√
x2 mod n) mod 2. This is because we could in principle

let sm+1 = x2 mod n and then work backwards defining sm = √sm+1 mod n, sm−1 =
√
sm mod

n, . . . , s0 =
√
s1 mod n. It follows that b0, . . . , b`−m are the last ` −m + 1 bits of BBS(s0), and

b0 is the bit predicted by Nm.
Now, x and−x are clearly square roots of sm+1. We show that they both have Jacobi symbol 1.

Since
(

x
n

)

=
(

x
p

)

·
(

x
q

)

= 1, then either
(

x
p

)

=
(

x
q

)

= 1 or
(

x
p

)

=
(

x
q

)

= −1. But because

p and q are Blum primes, −1 is a quadratic non-residue modulo both p and q, so
(

−1
p

)

=
(

−1
q

)

=
−1. It follows that

(−x
n

)

= 1. Hence, x = ±√sm+1, so exactly one of x and −x is a quadratic
residue.

Since n is odd, x mod n and −x mod n have opposite parity. Hence, x is a quadratic residue
iff x and

√
sm+1 have the same parity. But Nm outputs

√
sm+1 mod 2 with probability 1/2 + ε′,

so it follows that Q correctly determines the quadratic residuosity of its argument with probability
1/2 + ε′.

	Distinguishability and Bit Prediction
	BBS Generator
	Security of BBS

