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Solutions to Problem Set 5
Each problem counts 10 points

Problem 15: Intergral Broadcasting

Suppose user A is broadcasting packets to n recipients B1, ..., Bn. Privacy is not important but
integrity is. In other words, each of B1, ..., Bn should be assured that the packets he is receiving
were sent by A. User A decides to use a MAC.

(a) Suppose userA andB1, ..., Bn all share a secret key k. User A MAC’s every packet she sends
using k. Each user Bi can then verify the MAC. Using at most two sentences explain why
this scheme is insecure, namely, show that user B1 is not assured that packets he is receiving
are from A.

(b) Suppose user A has a set S = {k1, ..., km} of m secret keys. Each user Bi has some subset
Si ⊆ S of the keys. When A transmits a packet she appends m MAC’s to it by MACing the
packet with each of her m keys. When user Bi receives a packet he accepts it as valid only
if all MAC’s corresponding to keys in Si are valid. What property should the sets S1, ..., Sn
satisfy so that the attack from part (a) does not apply? We are assuming all users B1, ..., Bn
are succiently far apart so that they cannot collude.

(c) Show that when n = 6 (i.e. six recipients) the broadcaster A need only append 4 MAC’s to
every packet to satisfy the condition of part (b). Describe the sets S1, ..., S6 ⊆ {k1, ..., k4}
you would use.

Solution:

(a) Since A and all Bi ∈ B share the secret key k, any Bi can send to the parties B \ {Bi} a
message M appended with the MAC under k of M . To the recipients this looks exactly like
a message sent by A, and hence, the recipient is not sure the message came from A.

(b) Bi can successfully fool Bj(i 6= j) iff Bi has every key that Bj has. This is easy to see since
Bj verifies a message by verifying the MACs corresponding to the keys he has. Thus, for
the scheme to work, each pair Bi, Bj(i 6= j) must have at least one key not shared between
them. Then, no Bi can fool a Bj because Bi will lack one of the keys that Bj uses to verify
the message.

Note that we use the assumption of non-collusion to ensure that if some proper subset of
parties B̂ ∈ B have between them every key, they cannot work together to fool the parties in
B \ B̂.

(c) Let the keys be k1, k2, k3, k4. We note that 6 = C2
4. Hence each Si need only contain two

keys. The subsets are:

S1 : {k1, k2}
S2 : {k1, k3}
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S3 : {k1, k4}
S4 : {k2, k3}
S5 : {k2, k4}
S6 : {k3, k4}

Note that for any two Si, Sj (i 6= j), Si and Sj differ in at least one element.

Problem 16: Combining Signatures and Encryption

Let (SA, VA) be Alice’s digital signature scheme, and let (EB, DB) be Bob’s public key encryption
scheme. Alice wants to send a private signed message m to Bob. She thinks of several possible
ways to proceed:

i. Encrypted signed message: Alice sends EB(〈m,SA(m)〉) to Bob.

ii. Signed encrypted message: Alice sends 〈EB(m), SA(EB(m)〉 to Bob.

iii. Hybrid scheme: Alice sends 〈EB(m), SA(m)〉 to Bob.

(The notation 〈x, y〉 denotes the ordered pair (x, y), suitably encoded as a string.)

(a) For each scheme, describe how Bob decodes the message and verifies the signature.

(b) Alice comes to you for a recommendation of which scheme to use. Your job is to write a
brief report giving your best professional advice to her. You should consider in your report
any aspects that you feel would be important in practice, e.g., overall security and reliability
of each scheme, possibility of known or unanticipated attacks, efficiency of implementation,
and so forth.

Solution:

(a) The procedures are straightforward. Note that for scheme (ii), the signature is of the en-
crypted message; hence, the encrypted message must be given to the signature verification
predicate, not the plaintext message.

(b) The signed encrypted scheme (ii) is vulnerable to plagerism, since anyone can remove Alice’s
signature and put her/his own on instead, even though they can’t read the contents of the
message.

When choosing between (i) and (iii), speed and secrecy issues have to be balanced. For
efficiency of decryption and signature verification, (iii) is faster since the two can be done
in parallel. However, (iii) reveals more information about m, and if, in particular, the same
public key encryption method is used for both encryption and signatures (a bad idea) so
that SA(m) = DA(m), then m can be fully recovered because EA is public. Since now,
every computer is very fast, efficiency is not such a key issue, so (i) is the wisest choice.

Problem 17: Strong Collision-Free Hash Functions

Let h be a given strong collision-free hash function that maps bitstrings of length 2n to bitstrings
of length n. We wish to construct a new one-way hash function that maps bitstrings of length 4n to
bitstrings of length n. Write x = x1 ·x2 ·x3 ·x4, where each xi has length n. Consider the following
candidates:
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i. h1(x) = h((x1 ⊕ x2) · (x3 ⊕ x4)).

ii. h2(x) = h(h(x1 · x2) · h(x3 · x4)).

iii. h3(x) = h(x1 · x2)⊕ h(x3 · x4).

iv. h4(x) = h(h(h(x1 · x2) · x3) · x4).

(Here, “⊕” denotes bitwise exclusive-or and “·” denotes concatenation.)
For each function hi, say whether or not you think it is a strong collision-free hash function. If

you think it is, show that the ability to find collisions for hi would allow one to find collisions for h
(contradicting the assumption that h is a strong collision-free hash function). If you think it is not,
exhibit a pair of (distinct) colliding words for hi.

Solution:

(i) h1 is not strong collision-free because for any x1, x2, x3 and x4, h1(x1 · x2 · x3 · x4) =
h1(x2 · x1 · x4 · x3). This constitutes a collision if x1 6= x2 or x3 6= x4. For example, when
n = 1, (0100, 1000) is a colliding pair for h1.

(ii) h2 is a strong collision-free hash function. Suppose not. Then one could find a colliding pair
(x, x′) for h2, where x = x1 · x2 · x3 · x4 and x′ = x′1 · x′2 · x′3 · x′4. Hence, x 6= x′ and
h2(x) = h2(x′).

Let y = h(x1 · x2) · h(x3 · x4) and y′ = h(x′1 · x′2) · h(x′3 · x′4). If y 6= y′, then (y, y′) is a
colliding pair for h. If y = y′, then h(x1 · x2) = h(x′1 · x′2) and h(x3 · x4) = h(x′3 · x′4).
Hence, either (x1 · x2, x

′
1 · x′2) or (x3 · x4, x

′
3 · x′4) is a colliding pair for h since x 6= x′.

(iii) h3 is not a strong collision-free hash function since for any x = x1 · x2 · x3 · x4, if x′ =
x3 · x4 · x1 · x2 and x′ 6= x, then (x, x′) is a colliding pair for h3. Such x and x′ always exist.
For example, when n = 1, (0011, 1100) is a colliding pair for h3.

(iv) h4 is strong collision free. Suppose not. Then one could find a colliding pair (x, x′) for h4,
where x = x1 · x2 · x3 · x4 and x′ = x′1 · x′2 · x′3 · x′4. Hence, x 6= x′ and h4(x) = h4(x′). Let

y1 = h(x1 · x2) y′1 = h(x′1 · x′2)
y2 = h(y1 · x3) y′2 = h(y′1 · x3)
y3 = h(y2 · x4) y′3 = h(y′2 · x4)

We proceed to derive a contradiction. Clearly, y3 = h4(x) = h4(x′) = y′3. Because h is
strong collision-free, we must have y2 = y′2 and x4 = x′4. Similarly, we must have y1 = y′1
and x3 = x′3. Applying this same reasoning once again, we conclude that x1 = x′1 and
x2 = x′2. Putting this all together, it follows that x = x′, contradicting the assumption that
(x, x′) is a colliding pair for h4. Hence h4 is strong collision free.
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