
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467b: Cryptography and Computer Security Handout #23
Zheng Ma May 2, 2005

Solutions to Problem Set 7

Problem 21: (Oblivious Transfer)

Oblivious Transfer is a two party protocol (A(b), B) such that at the end of this protocol one of
the following two events occurs, each with probability 1/2:

(a) B learns the value b.

(b) B gains no information about b beyond what, if anything,B knew about b before the protocol.

At the end of the protocol, B knows which of the two events occurred, and A has no idea which
event occurred.

One-out-of-two Oblivious Transfer is a two party protocol (A(b0, b1), B(s)), such that at the end
of this protocol, all of the following three conditions hold:

(a) B learns the value bs.

(b) B gains no information about bt beyond what, if anything, B knew about bt before the pro-
tocol, where t = 1− s.

(c) A learns nothing about s.

Here is an implementation of one-out-of-two oblivious transfer using a basic oblivious transfer
primitive as a black box. (This protocol is adapted from one in lecture notes by Rafail Ostrovsky,
http://www.cs.ucla.edu/˜rafail/TEACHING/WINTER-2005/L10/L10.pdf.)

1. Let n be a security parameter, and set M = 3n. A chooses a random bit string r =
r1r2 . . . rM of length M . A uses the basic oblivious transfer protocol M times to transfer
r to B, one bit at a time. B learns approximately 1/2 of the bits ri. Let I ⊆ {1, . . . ,M} be
the set of indices i for which B does learn ri.

2. B’s input bit is s. B wants to learn A’s secret bs. B chooses a random subset Is of I of size
n and a random subset I1−s of {1, . . . ,M} − I , also of size n, and sends the sets I0 and I1

to A.

3. A checks that I0, I1 are disjoint subsets of the right form. A then computes ci = bi ⊕
(

⊕

j∈Ii rj
)

, for i = 0, 1, and sends c0, c1 to B.

4. B computes bs = cs ⊕
(

⊕

j∈Is rj
)

.

http://www.cs.ucla.edu/~rafail/TEACHING/WINTER-2005/L10/L10.pdf

2 Solutions to Problem Set 7

Questions:

(a) This protocol can sometimes fail. Explain how.
Solution: If |I| < n or |I| > 2n in the first step. Thus B can’t choose Is or I1−S in step 2.
So the protocol will fail.

(b) The above definition of one-out-of-two oblivious transfer does not allow for failure. Make a
minor change to the definition so that it matches what this protocol is actually able to achieve.
Solution: Change the definition to ”With the high probability, that the following three con-
dition hold: ...”

(c) Describe why B learns the desired value bs. Is this always true or only true with high proba-
bility?
Solution: Since B learns all elements in Is, he can calculate bs as below:

bs = cs ⊕ (⊕j∈Isrj) = bs ⊕ (⊕j∈Isrj)⊕ (⊕j∈Isrj) = bs ⊕ (⊕j∈Is(rj ⊕ rj)) = bs (1)

Because the protocol might fail with a small probability, the above statement is true with high
probability.

(d) Describe why B gains no information about b1−s. Is this always true or only true with high
probability?
Solution: B gains no information about any of the elements in I1−s, so in particular, B
gains no information about (⊕j∈I1−srj). Hence, B gains no information about b1−s, even
given c1−s = b1−s ⊕ (⊕j∈I1−srj). So for an honest B, he gains no information no matter
whether the protocol succeeds or fails. However, for a cheatingB, with small probability that
|I| ≥ 2n, B can learn both bs and b1−s. So the above statement is true with high probability.

(e) Describe whyA learns nothing about s. Is this always true or only true with high probability?
Solution: A learns nothing about s because of the fact that I0 and I1 are the same size
and both contain only the information of the indices. With the definition of basic oblivious
transfer, A has no idea whether B learns the bit value or not. This is always true.

(f) Describe why a cheating B cannot learn both b0 and b1. Is this always true or only true with
high probability?
Solution: If B knows more than 2n bits, he can cheat and send both sets as disjoint subsets
of the bits he knows. Then he can learn both bits. This happens with small probability that
|I| > 2n. If B doesn’t know more than 2n bits he can’t send any two disjoint sets because
he will not know enough bits to do so. So the above statement is true with high probability.

(g) Why does Alice need to check I0 and I1 in step (3)? Explain how B could cheat if she failed
to do so.
Solution: Otherwise, B could send Is = I1−s ⊆ I and learn both bits.

(h) Does the protocol still work if M is defined to be 2n instead of 3n? Defined to be 5n instead
of 3n? Explain.
Solution: If M is defined as 2n, then the protocol will fail when |I| 6= n. Because the
probability that |I| 6= n is very high when M = 2n, the protocol can’t work in this case.

If M is defined as 5n, the protocol may still work. However, the probability of B being able
to cheat is big, more than 1/2. This is B learns more than 2n bits from the oblivious trans-
fer with high probability. So from the modified definition of the One-out-of-two Oblivious
Transfer, this is still a failed solution.

Handout #23—May 2, 2005 3

The next two problems concern the Blum-Blum-Shub pseudorandom sequence generator. See
Handout 18 for the exact definitions assumed by these problems.

Problem 22: (BBS Pseudorandom Sequence Generator)

Write a C function to implement the Blum-Blum-Shub pseudorandom sequence generator. You can
assume the inputs to your programs are numbers at most 15 bits long (so they are short enough to
fit into a variable of type short int).

Your function should have the prototype

short int bbs random(short int len,
short int buf[],
short int seed,
short int n);

buf is assumed to be a buffer of length len, seed is the seed (starting value) for the BBS
generator, and n is the modulus for the BBS generator. You may assume that seed is in Z∗n and
that n is a Blum integer. A call to bbs random() generates len pseudorandom bits and places
them in buf[0], . . . , buf[len-1], one bit per array element. The new seed is returned.

To test your function, write a command bbs that calls bbs random(). The command line
“bbs len seed n” generates len bits starting from seed seed and modulus n and prints three
lines of output. The first line echos the command line arguments. The second contains the pseu-
dorandom bit sequence, printed as a sequence of 0’s and 1’s with no intervening spaces. The third
contains the new seed, printed in decimal.

Run your command on the arguments 80 3 13589. (Note that 13589 = 107× 127 is a Blum
integer.) Write your answers to a file called bbsout.txt and submit both the program and the
answers file.
Solution: Your output should be the following.

80 3 13589
11101111011110011101111111000010001111011010010001111010000010101101001110000101
7955

A possible [slightly corny] implementation is the following.

#include <stdio.h>
#include <stdlib.h>

#define a for (i=0; i<len;i++){printf ("%1d",buf[i]);}
#define putarg(i,into) sscanf(argv[i],"%d",into)
#define P putarg(1, &len);
#define p putarg(2, &seed);
#define Y putarg(3, &n);
#define usage "bbs_15 <len> <seed> <n>"
#define L printf("\n%d\n",seed);
#define A if (argc != 4){printf("Usage:%s\n",usage);exit(1);}
#define H int len,seed,n,*buf,i;
#define F buf = (int*)malloc(len * sizeof(int));
#define S free(buf); exit(0);

4 Solutions to Problem Set 7

#define N printf("%s %s %s\n", argv[1],argv[2],argv[3]);
#define I seed = bbs_random(len,buf,seed,n);

int bbs_random(int len, int buf[], int seed, int n){
int i;

for (i=0; i<len; i++){
seed=(seed*seed)%n; buf[i] = seed%2 ;

}
return seed;

}

int main(int argc , char *argv[]){
H A P p Y F I N a L S

}

Problem 23: (Cycle Lengths)

The purpose of this problem is to explore the cycle lengths of the various possible seeds in the BBS
generator of problem 22. For any seed s0 ∈ Z∗n, define the cycle length of s0 to be k − 1, where
k is the least integer > 1 such that sk = s1 in the BBS-generated sequence s1, s2, s3, . . ., where
si = s2

i−1 mod n, for i = 1, 2, 3,

Questions:

(a) Why is the cycle length well defined for every s0 ∈ Z∗n? That is, why does s1 occur in the
sequence s2, s3, s4, . . .?
Solution: Let’s prove it by showing a contradiction. Suppose s1 doesn’t occur in the se-
quence of s2, s3, s4, Then there must be some other i (i 6= 1) such that si repeats in
the sequence. This follows from the fact that the sequence is infinite while the number of
quadratic residues in Z∗n is finite. Suppose that the first repeated number is sk (k 6= 1), so the
sequence has the form s1, . . . , sk−1, sk, . . . , sl, sk, Then both sk−1 and sl are the princi-
pal square root of sk since for a Blum integer n, each quadratic residue in Z∗n has exactly one
principal square root. This shows sk−1 equals to sl. So sk is not the first repeated number in
the sequence, a contradiction. So s1 occurs in the sequence s2, s3, s4,

(b) What is the expected cycle length when s0 is chosen uniformly at random from Z∗n, where
n = 13589 = 107× 127.

For part (b), you should write a program to build a table of quadratic residues and the cycles
they lie in. Then compute a table of cycles and their lengths. Finally, compute the expected cycle
length. For example, for n = 33 = 3× 11, there are 5 quadratic residues, so the table of quadratic
residues and the table of cycles might look as follows:

x (x2 mod 33) cycle #
1 1 1
4 16 2

16 25 2
25 31 2
31 4 2

cycle # length
1 1
2 4

Handout #23—May 2, 2005 5

From this table, we see that there are only two cycles: (1) and (4, 16, 25, 31), Of the 20 possible
seeds in Z∗33, 4 lead to the first cycle and 16 lead to the second cycle. Hence, the expected cycle
length is

4
20
× 1 +

16
20
× 4 =

68
20

= 3.4

Solution: The expected cycle length is 148.3. Here is one of the implementations. (Thank Melody
Chan for letting me use her solution).

#include <stdio.h>
#include <stdlib.h>

/* GCD */
int gcd(int a, int b) {

if (b==0) return a;
return gcd(b, a%b);

}

int main (int argc, char **argv) {

int n, i, j, last_cycle, num_qrs;
int **table;
int *table2;

if (argc != 2) {
printf("usage: cycle n\n");
exit(1);

}

sscanf(argv[1], "%d", &n);

table = malloc(sizeof(int *) * n);
/* Row i contains

i*i (or 0 if i is not relatively prime to n)
a flag indicating whether i is a QR mod n
cycle # of i (or 0 if i is not a QR) */

for (i = 0; i < n; i++) {
table[i] = malloc(sizeof(int) * 3);

if (gcd(i, n) == 1) table[i][0] = i * i % n;
else table[i][0] = 0;

table[i][1] = 0; /* initially set QR flag to 0 */

6 Solutions to Problem Set 7

table[i][2] = 0; /* initially is not part of a cycle */

}

/* Mark QRs and count them */
num_qrs = 0;
for (i = 0; i < n; i++) {
if (table[i][0] && (table[table[i][0]][1] == 0)) {
table[table[i][0]][1] = 1;
num_qrs++;

}
}

/* Number cycles */
last_cycle = 0;
for (i = 0; i < n; i++) {
if (table[i][1] && (table[i][2] == 0)) {

table[i][2] = ++last_cycle;
for (j = table[i][0]; j != i; j = table[j][0])

table[j][2] = last_cycle;

}
}

table2 = malloc(sizeof(int) * (last_cycle + 1));
/* initialize */
for (i = 0; i < last_cycle + 1; i++) table2[i] = 0;
/* count up how many in each cycle */
/* we will count those in "cycle 0" and then discard that info */
for (i = 0; i < n; i++) table2[table[i][2]]++;

/* The expected cycle length is the sum of the squares of the
lengths divided by the number of quadratic residues */
j = 0;
for (i = 1; i < last_cycle + 1; i++) j += table2[i] * table2[i];
printf("%f\n", (float) j / num_qrs);

/* Free */
for (i = 0; i < n; i++) free(table[i]);
free(table);
free(table2);

return 0;

}

	(Oblivious Transfer)
	(BBS Pseudorandom Sequence Generator)
	(Cycle Lengths)

