
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467b: Cryptography and Computer Security
Week 3 (rev. 2)

Professor M. J. Fischer January 25 & 27, 2005

Lecture Notes, Week 3

1 Stream ciphers from CFB and OFB modes

CFB and OFB block chaining modes (see Lecture Notes, Week 2) can be naturally extended to
stream ciphers on units smaller than full blocks. The idea is to use a shift register R to accumulate
the feedback bits from previous stages of encryption so that the full-sized blocks needed by the
block chaining method are available. R is initialized to some public initialization vector.

Assume for sake of discussion a 64-bit block size for the underlying block cipher and a character
size of s-bits. (Think of s = 8.) Let B = {0, 1}. We define two operations: σ : B64 → Bs and
µ : B64 ×Bs → B64, where σ(x) is the leftmost s bits of x, and µ(x, c) is the rightmost 64 bits of
the bit string xc.

The extended version of CFB and OFB are very similar. Both compute a byte key ki and use it
to encrypt message bytemi with a simple XOR cipher. That is, ci = mi⊕ki. In both modes, ki can
be computed knowing only the ciphertext and master key, so Bob computes ki and then decrypts
by computing mi = ci ⊕ ki. Finally, both modes compute ki = σ(Ek(Ri)) where Ri is the new
contents of the shift register at stage i. The two modes differ in how they update the shift register.
In extended CFB mode, Ri = µ(Ri−1, ci−1). In extended OFB mode, Ri = µ(Ri−1, ki−1). Thus,
CFB updates R using the previous ciphertext byte, whereas OFB updates it using the previous byte
key.

The differences between the two modes seem minor, but they have profound implications on
the resulting cryptosystem. In CFB mode, the loss of ciphertext byte ci will cause mi and several
succeeding message bytes to become undecipherable. At first sight it might seem that all future
message bytes would be lost, but if one looks carefully at the shift register updating algorithm, one
sees that Rj = cj−8cj−7 . . . cj−2cj−1 (in our special case of s = 8), so it depends on only the last
eight ciphertext bytes. Hence, Bob will be able to recover plaintext bytes beginning with mi+8 after
the loss of ci. In OFB mode,Ri depends only on i and the master key k (and the initialization vector
IV), so loss of a ciphertext byte causes loss of only the corresponding plaintext byte.

The downside of OFB is the same as for the one-time pad and other simple XOR ciphers,
namely, if two message streams are encrypted using the same master key, then the XOR of their
encryptions is the same as the XOR of the plaintexts. This allows Eve to recover potentially useful
information about the plaintexts and renders the method vulnerable to a known plaintext attack.
CFB does not suffer from this problem since different messages lead to different ciphertexts and
hence different key streams. However, even CFB mode has the undesirable property that the key
streams will be the same up to and including the first byte in which the two message streams differ.
This will enable Eve to determine the length of the common prefix of the two message streams and
also to determine the XOR of the first bytes at which they differ.

One way around this problem in both ciphers is to use a different initialization vector for each
message. The IV is sent to B in the clear, along with the ciphertext. R = R0 is initialized to IV,
then k0 = σ(Ek(R0)) is computed, and then normal encryption proceeds.

2 CPSC 467b Lecture Notes, Week 3 (rev. 2)

2 Entropy

I have been talking loosely about the “information content” of a message and the fact that normal
English text is quite “redundant”. Information theory, pioneered by Claude Shannon half a century
ago, provides an elegant and rigorous framework for studying these notions. I present just a bit of it
here to give you a flavor of how one might proceed.

Redundancy in language refers to the fact that most combinations of letters do not form a mean-
ingful English-language message. Meaning of course exists at many different levels. “QXUUUOV
FMMZ” is not meaningful because the individual “words” are non-sense. “FUZZY WILL ARE”
contains three valid words, but they are combined in an ungrammatical and non-sensible order.
“PURPLE COWS SURF MODEMS” is grammatically correct but lacks semantic meaning.

In our abstract theory, we assume some classification of the entire message space M into a
meaningful subsetM′ and a meaningless complementM−M′, and we assume Alice sends only
meaningful messages.

Consider the usual case where Σ is a finite alphabet, andM = Σ∗ consists of all strings over
Σ. For a set of strings S, let Sn be the subset of strings in S of length n. We define the “number
of bits” of information in an arbitrary member of Sn to be B(Sn) = log2(|Sn|). This makes
sense, for if one imagines listing the elements of Sn in a table, the length of the table is |Sn|,
and integers of length dlog2(|Sn|)e are adequate to index the table. Let b(S, n) = B(Sn)/n, the
average bits per character for a string in Sn. Clearly, b(Σ∗, n) = log2 s, where s = |Σ|. The ratio
b(S, n)/b(Σ∗, n) = b(S, n)/(log2 s) compares the amount of information per character for strings
in Sn to the amount of information per character for arbitrary strings. This ratio is 1 when Sn = Σn

and is 0 when |Sn| = 1.1

The above argues that there is a coding scheme for Sn such that the average length represen-
tation is ≈ log2(|Sn|). However, one does not always want to assume that all words are equally
likely. When different words of Sn have different probabilities of occurring, the expected length
representation is minimized by a Huffman code and can be much less than the average encoding
length in the unweighted case.

The notion of entropy extends the informal definition of B(Sn) to this case. We imagine an
idealized encoding scheme in which each word x is represented by − log2(px) bits, where px is
its probability of occurring.2 Then the expected length of an encoding of a random word in Sn is
the weighted average, where we weight the length of each representation x by its probability px.
Formally, if X is a random variable ranging over Sn, we define its entropy H(X) to be

H(X) =
∑

x∈Sn
−px log2(px)

Note that H(X) = B(Sn) in the special case that all elements are equally likely. That is, if px =
1/|Sn| for all x ∈ Sn, we have

H(X) =
∑

x∈Sn
− 1
|Sn|

log2

(

1
|Sn|

)

= − log2

(

1
|Sn|

)

= log2(|Sn|)
= B(Sn)

1It is undefined when Sn = ∅.
2This assumption is approximately true for Huffman encodings and becomes exactly true in a “limiting” sense that is

beyond the scope of these notes.

CPSC 467b Lecture Notes, Week 3 (rev. 2) 3

In a similar way, we extend the definition of b(S, n), the “average” bits per character, by letting
h(X,n) = H(X)/n. We now define the redundancy of X to be ρn = 1 − h(X)/(log2 s). Thus,
the redundancy is 0 when all strings of Sn are equally likely and 1 when one string x occurs with
probability px = 1 and all other strings have probability 0.

Now, suppose M′ is the set of meaningful English language messages, however one wants
to define that, and to keep this discussion simple, we assume that all meaningful messages are
equally likely. It is reasonable to assume in our model that b(M′, n) approaches a limit b as n →
∞. The reason for this is that |M′n+m| ≈ |M′n| · |M′m| when n and m are both large. Hence,
b(M′, n) = log2(|M′|)/n ≈ b. Thus, we will assume that |M′n| = 2bn and the redundancy is
ρn = 1− b/(log2 s).

Suppose Eve intercepts the ciphertext c = Ek(m) for a message m of length n, where k ∈ K is
a randomly selected key. The preimage C of c inM under the various choices of k has size at most
|K|, and possibly less, since we in general make no assumption that c always decrypts to different
messages under different keys. Obviously, m ∈ C. If it happens that C ∩ M′ is the singleton
set {m}, then Eve knows that m is the correct plaintext decryption of c. The probability of this
occurring depends on both the length of the plaintext and also on the particular encryption function
being used.

Two extreme cases are worth mentioning. Suppose the encryption function is “well matched”
to the meaningful messages in the sense that Ek(m) is always in some subset C′ of C whenever
m ∈ M′, and Ek(m) is in C − C′ whenever m ∈ M −M′. Then the inverse image of every
c ∈ C′ is contained inM′, so Eve is never able to uniquely identify m from c, no matter how much
time she spends (unless the inverse image happens to be a singleton set, which is obviously very
insecure).

To the contrary, one could imagine an encryption function such that the inverse image of every
c ∈ C contains either zero or one meaningful message. In such a case, Eve can always find m from
c, given enough time.

In practice, it is often assumed that the encryption function is not at all correlated with the notion
of meaningful messages. This means that the family of encryption functions {Ek}k∈K behaves like
a randomly-chosen such family. In that case, Eve has a certain probability of unique decryption,
which goes to 1 as n gets large.

We can approximate this probability by a simple calculation. Let m0 ∈ M′n, k0 ∈ K, and let
c0 = Ek0(m0). We wish to estimate

pn = prob[{m ∈M′n | Ek(m) = c0 for some k ∈ K} = {m0}] .

This is the probability that the only meaningful message in the preimage of c0 is the original message
m0. For this to be the case, it must be that every other key k 6= k0 decrypts c0 to a message in
Mn −M′n. Assuming |Mn| = |Cn| and each decryption function is a random permutation, the
probability that one key causes c0 to decrypt to a meaningless message is

qn =
|Mn −M′n|
|Mn|

= 1− |M
′
n|

|Mn|
.

But under our assumptions, |M′n| = 2bn and |Mn| = sn, so |M′n|/|Mn| = 2bn/sn. Since
b = (1− ρn) log2 s, it follows that

qn = 1− 2bn

sn
= 1− s(1−ρn)n

sn
= 1− (s−ρn)n .

4 CPSC 467b Lecture Notes, Week 3 (rev. 2)

Now, the probability that all t = |K| − 1 keys other than k0 cause c0 to decrypt to a meaningless
message is

pn = (qn)t = (1− s−n·ρn)t

By the binomial theorem, pn is approximately 1− ts−n·ρn when s−n·ρn is small. Since t, s, and ρn
are all constants independent of n, we see that s−n·ρn → 0 as n→∞. Hence, pn → 1 as n→∞,
so large messages can be uniquely decrypted with probability approaching 1.

3 Data Encryption Standard (DES)

The Data Encryption Standard is a block cipher that operates on 64-bit blocks and uses a 56-bit
key. It was the standard algorithm for data encryption for over 20 years until it became widely
acknowledged that the key length was too short and it was subject to brute force attack. (The new
standard used the Rijndael algorithm and is called AES.)

3.1 Feistel Networks

DES is based on a Feistel network. This is a general method for building an invertible function from
any function f that scrambles bits. It consists of some number of stages. Each stage i maps a pair
of 32-bit words (Li, Ri) to a new pair (Li+1, Ri+1). By applying the stages in sequence, a t-stage
network maps (L0, R0) to (Lt, Rt). The (L0, R0) is the plaintext, and (Lt, Rt) is the corresponding
ciphertext.

Each stage works as follows:
Li+1 = Ri (1)

Ri+1 = Li ⊕ f(Ri,Ki) (2)

Here, Ki is a subkey, which is generally derived in some systematic way from the master key k.
The security of a Feistel-based code lies in the construction of the function f and in the method

for producing the subkeys Ki, However, the invertibility follows just from properties of ⊕.
The inversion problem is to find (Li, Ri) given (Li+1, Ri+1). Equation 1 gives us Ri. Knowing

Ri and Ki, we can compute f(Ri,Ki). We can then solve equation 2 to get

Li = Ri+1 ⊕ f(Ri,Ki)

DES uses a 16 stage Feistel network. The pair L0R0 is constructed from a 64-bit message by a
fixed initial permutation IP. The ciphertext output is obtained by applying IP−1 to R16L16.

The scrambling function f(Ri,Ki) operates on a 32-bit data block and a 48-bit key block. Thus,
a total of 48× 16 = 768 key bits are used. They are all derived in a systematic way from the 56-bit
primary key and are far from independent of each other.

3.2 The Scrambling Function

The scrambling function f(Ri,Ki) is the heart of DES. It operates on a 32-bit data block and a 48-
bit key block. Thus, a total of 48× 16 = 768 key bits are used. They are all derived in a systematic
way from the 56-bit master key k and are far from independent of each other. In a little more detail,
k is split into two 28-bit pieces C and D. At each stage, C and D are rotated by one or two bit
positions. Subkey Ki is then obtained by applying a fixed permutation (transposition) to CD. (See
Table 3.4c of the text.)

CPSC 467b Lecture Notes, Week 3 (rev. 2) 5

The scrambling function itself is rather involved. However, at its heart are eight “S-boxes”.
These are boxes with 6 binary inputs c0, x1, x2, x3, x4, c1 and 4 binary outputs y1, y2, y3, y4. Each
computes some fixed function in {0, 1}6 → {0, 1}4. Moreover, each S-box has the very special
property that for each of the four possible ways of fixing the values of (c0, c1) to Boolean constants,
the resulting function on the remaining four inputs x1, . . . , x4 is a permutation from {0, 1}4 →
{0, 1}4. Therefore, we can regard an S-box as performing a substitution on four-bit “characters”,
where the substitution performed depends both on the structure of the particular S-box and on the
values of its “control inputs” c0 and c1. The eight S-boxes are all different and are specified by their
truth tables.

The S-boxes together have a total of 48 input lines. Each of these lines is the output of a
corresponding ⊕-gate. One input of each of these ⊕-gates is connected to a corresponding bit of
the 48-bit subkey Ki. (This is the only place that the key enters into DES.) The other input of each
⊕-gate is connected to one of the 32 bits of the first argument of f . Since there are 48 ⊕-gates and
only 32 bits in the first argument to f , some of those bits get used more than once. The mapping of
input bits to ⊕-gates is called the expansion permutation E and is given by Table 3.2(c) in the text.
By looking at the table, one sees that the ⊕-gates connected to the six inputs c0, x1, x2, x3, x4, c1

for S-box 1 are in turn connected to the input bits 32, 1, 2, 3, 4, 5, respectively. For S-box 2, they
go to bits 4, 5, 6, 7, 8, 9, etc. Thus, inputs bits 1, 4, 5, 8, 9, . . . 28, 29, 32 are each used twice, and the
remaining input bits are each used once.

Finally, the 32 bits of output from the S-boxes are passed through a fixed permutation P (trans-
position) that spreads out the output bits. The outputs of a single S-box at one stage of DES become
inputs to several different S-boxes at the next stage. This helps provide the desirable “avalanche”
effect described in the text.

3.3 Security considerations

We have mentioned previously that DES is vulnerable to a brute force attack because of its small key
size of only 56 bits. However, it has turned out to be remarkably resistant to two recently discovered
cryptanalysis attacks, differential cryptanalysis and linear cryptanalysis. The former can break DES
using “only” 247 chosen ciphertext pairs. The latter works with 243 chosen plaintext pairs. Neither
attack is feasible in practice.

DES has now been replaced as a national standard by the new AES (Advanced Encryption
Standard), based on the Rijndael algorithm, developed by two Dutch computer scientists. AES
supports key sizes of 128, 192, and 256 bits and works on 128-bit blocks. We will say more about
it later in the course.

	Stream ciphers from CFB and OFB modes
	Entropy
	Data Encryption Standard (DES)
	Feistel Networks
	The Scrambling Function
	Security considerations

