
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467b: Cryptography and Computer Security
Week 4 (rev. 4)

Professor M. J. Fischer February 1 & 3, 2005

Lecture Notes, Week 4

1 Message authentication codes (MACs)

So far in the course, we have been discussing only a single cryptographic application, namely, secret
message transmission from Alice to Bob over a a publicly-readable channel. Our goal has been to
maintain privacy in the face of an eavesdropper Eve.

Once we assume that Eve has the power to modify messages and generate her own messages as
well as eavesdrop, life becomes more difficult. We usually call that kind of a malicious adversary
“Mallory” (to distinguish him from Eve, who only eavesdrops).

Encryption alone no longer solves Alice and Bob’s problem. Alice sends c = Ek(m), but Bob
may receive a corrupted or forged c′ 6= c. How then does Bob know that the message he receives
really was sent by Alice?

The naive answer is that Bob computes m′ = Dk(c′), and if m′ “looks like” a valid message,
then Bob accepts it as having come from Alice. The reasoning here is that Mallory, not knowing k,
could not possibly have produced a valid-looking message.

For any particular cipher such as DES, that assumption may or may not be valid, but here are
two things to watch out for:

1. There are three successively easier possible attacks in which Mallory might produce fraudu-
lent messages:

(a) He might produce c′ = Ek(m′) for a message m′ of his choosing.
(b) He might produce a message c′ for which the corresponding plaintext m′ is a valid

message, even though he could not choose m′ in advance, nor perhaps he does not even
know what m′ is.

(c) He might be able to alter a legitimate message c from Alice to produce a new message
c′ that corresponds to an altered form m′ of the true message m. For example, if m
represents an amount of money, it is conceivable that Mallory could find the encryption
of m+ 1 given the encryption of m, without knowing either m or m+ 1.

Attack (1a) is similar to, but not the same as, the notion of breaking the cryptosystem that we
have been studying. We have been asking that it be hard for Eve to computem = Dk(c) given
c. To carry out attack (1a) requires that Mallory compute Ek(m) given m. It’s conceivable
that he could do the latter without being able to do the former.

One form of attack (1b) is clearly possible, the so-called a replay attack. This is when Mallory
substitutes a legitimate old encrypted message c′ for the current message c. It can be thwarted
by adding timestamps and/or sequence numbers to the messages, so that Bob can recognize
when old messages are being received. Of course, this only works if Alice and Bob anticipate
the attack and incorporate appropriate countermeasures into the protocol they are using.

However, even if replay attacks are ruled out, a cryptosystem that is secure against attack (1a)
might still permit attack (1b). There are all sorts of ways that Mallory can generate values c′.
What gives us confidence that Bob won’t accept one of them as being valid?

2 CPSC 467b Lecture Notes, Week 4 (rev. 4)

Attack (1c) might be possible even in a cryptosystem that is free from attacks (1a) and (1b).
For example, if c1 and c2 are encryptions of valid messages, perhaps so is c1 ⊕ c2. Whether
or not it is depends entirely on particular properties of Ek. It does not follow in general from
the difficulty of decrypting a given ciphertext. We will see some cryptosystems later which
do have the property of being vulnerable to attack (1c). In some contexts, this can actually be
a useful property, as we will see.

2. Cryptosystems are not always used to send natural language or other highly-redundant mes-
sages. For example, suppose Alice wants to send Bob her password to a web site. Knowing
full well the dangers of sending passwords in the clear over the internet, she chooses to en-
crypt it instead. Since passwords are supposed to look like random strings of characters, Bob
will likely accept anything he gets from Alice. He could be quite embarrassed (or worse)
claiming he knew the correct password when in fact the password he thought was from Alice
was actually a fraudulent one derived from a random ciphertext c′ produced by Mallory.

What Alice and Bob need to solve their problem is called a Message Authentication Code or
MAC. A MAC is generated by a function function Ck(m) that can be computed by anyone knowing
a secret key k. However, it should be hard for an attacker to find any pair (m, ξ) such that ξ =
Ck(m) without knowing k. In fact, this should remain hard even if the attacker knows a set of valid
MAC pairs {(m1, ξ1), . . . , (mt, ξt)}, so long as m itself is not the message in one of the known
pairs. We will discuss next time how DES and other block ciphers can be used to generate a MAC.

Using a MAC, Alice can send both c = Ek(m) and also ξ = Ck(m). Bob receives c′ and
ξ′, possibly different from what Alice sent. Bob computes m′ = Dk(c′) and then checks that
ξ′ = Ck(m′). If the check fails, then Bob knows that either m or ξ (or both) are invalid.

2 Computing MACs

One way to use a block cipher to compute a MAC is to use one of the ciphertext chaining modes,
CBC or CFB. (See Lecture notes week 2, section 2.2.) In these modes, the last ciphertext block
ct depends on all t message blocks m1, . . . ,mt. Therefore, we define Ck(m) = ct. The result of
this process is reputed to be a good MAC generation function. Note that the MAC is only a single
block long, which in general is much shorter than the message. A MAC acts like a checksum for
preserving data integrity, but it has the advantage that an adversary cannot compute a valid MAC
for an altered message.

3 Asymmetric cryptosystems

A major advance in cryptography is the modern development of asymmetric (also called 2-key or
public key) cryptosystems. The idea is simple. Instead of having a single key k that is used by
both Alice and Bob, an asymmetric cryptosystem has a pair of related keys, an encryption key e
and a decryption key d. Alice encrypts a message m by computing c = Ee(m). Bob decrypts by
computing m = Dd(c).1 As always, the decryption function inverts the encryption function, so the

1We often get sloppy with notation when discussing asymmetric cryptosystems. Let k = (e, d) be a key pair. We
sometimes write ke and kd for the first and second keys, respectively, so we might use the rather cumbersome notation
Eke(m) and Dkd(c). But then we might simplify this by dropping the second-level subscripts to get the same notation
we use for symmetric cryptosystems, namely Ek(m) and Dk(c). Nevertheless, it should still be understood that the “k”
in Ek refers to the first element of the key pair, whereas the “k” in Dk refers to the second. In practice, it isn’t generally
as confusing as all this. but the potential for misunderstanding is there.

CPSC 467b Lecture Notes, Week 4 (rev. 4) 3

following is always satisfied:
m = Dd(Ee(m)).

What makes asymmetric systems useful is the additional requirement that it be difficult to find
d from e, and more generally, that it be difficult to find m given both e and c = Ee(m). Thus, the
system remains secure even if the encryption key e is made public!

There are several reasons to make e public. One is that it is then possible for anybody to send
a private message to Bob. Sandra need only obtain Bob’s public key e and send Bob Ee(m). Bob
recovers m by applying Dd to the received ciphertext. This greatly simplifies the key management
problem, for there is no longer the need for a secure channel between Alice and Bob for the initial
key distribution (which I have carefully avoided talking about so far).

Of course, an active adversary Mallory can still do some nasty things. For example, he could
send his own encryption key to Sandra when she attempts to obtain Bob’s key. Not knowing she
has been duped, Sandra would then encrypt her private data in a way that Bob could not read
but Mallory could! If Mallory wanted to carry out this charade for a longer time without being
discovered, he could intercept each message from Sandra to Mallory, decrypt the message using his
own decryption key, then re-encrypt it using Bob’s public encryption key and send it on its way to
Bob. Bob, receiving a validly encrypted message, will be none the wiser to Mallory’s shenanigans.
This is an example of a man-in-the-middle attack.

The security requirements for an asymmetric cryptosystem are more stringent than for a sym-
metric cryptosystem. For example, the system must be secure against large-scale chosen plaintext
attacks, for Eve can generate as many plaintext-ciphertext pairs as she wishes using the public en-
cryption function Ee().

The public encryption function also gives Eve a way to check the validity of a potential decryp-
tion. Namely, if Eve guesses that Dd(c) = m0 for some candidate message m0, she can check her
guess by testing if c = Ee(m0). Thus, whether or not there is redundancy in the set of meaning-
ful messages is of no consequence to her since she now has an independent way of determining a
successful decryption.

Designing a good asymmetric cryptosystem is much harder than designing a good symmetric
cryptosystem. All of the known asymmetric systems are orders of magnitude slower than cor-
responding symmetric systems. Therefore, they are often used in conjunction with a symmetric
cipher to form a hybrid system. Here’s how this works. Suppose (E2, D2) is a 2-key cryptosystem
and (E1, D1) is a 1-key cryptosystem. To send a secret message m to Bob, Alice first generates a
random session key k for use with the 1-key system. which she then uses to encryptm. She then en-
crypts the session key using Bob’s public key for the 2-key system and sends Bob both ciphertexts.
In formulas, she sends Bob c1 = E1

k(m) and c2 = E2
e (k). Bob decrypts c2 using D2

d() to obtain
k and then decrypts c1 using D1

k() to obtain m. This is much more efficient than simply sending
D2
e(m) in the common case that m is much longer than k.

4 RSA

Probably the most commonly used asymmetric cryptosystem in use today is RSA, named from the
initials of its three inventors, Rivest, Shamir, and Adelman. Unlike the symmetric systems we have
been talking about so far, RSA is based not on substitution and transposition but on arithmetic in-
volving very large integers, numbers that are hundreds or even thousands of bits long. To understand
how RSA works requires knowing a bit of number theory, which we will be presenting in the next
few lectures. However, the basic ideas can be presented quite simply, which I will do now.

4 CPSC 467b Lecture Notes, Week 4 (rev. 4)

RSA assumes the message space, ciphertext space, and key space are the set of integers between
0 and n − 1, where n is a large integer. For now, think of n as a number so large that its binary
representation is 1024 bits long. To use RSA in the usual case where we are interested in sending bit
strings, Alice must first convert her message to an integer, and Bob must convert the integer he gets
from decryption back to a bit string. Many such encodings are possible, but perhaps the simplest is
to prepend a “1” to the bit string x and regard the result as a binary integer m. To decode m to a bit
string, write out m in binary and then delete the initial “1” bit. To ensure that m < n as required,
we will limit the length of our binary messages to 1022 bits.

Here’s how RSA works. Alice chooses two sufficiently large prime numbers p and q and com-
putes n = pq. For security, p and q should be about the same length (when written in binary). She
then computes two numbers e and d with a certain number-theoretic relationship. The public key
is the pair (e, n) The private key is the pair (d, n). The primes p and q are no longer needed and
should be discarded.

To encrypt, Alice computes c = me mod n.2 To decrypt, Bob computes m = cd (mod n).
Here, a mod n means the remainder when a is divided by n. That’s all there is to it, once the keys
have been found. It turns out that most of the complexity in implementing RSA has to do with key
generation, which fortunately is done only infrequently.

You should already be asking yourself the following questions:

• How does one find p, q, e, d with the desired properties?

• What are the desired properties that make RSA work? A priori, it seems pretty unlikely that
Dd(Ee(m)) = (me mod n)d mod n = m.

• Why is RSA believed to be secure?

• How can one implement RSA on a computer when most computers only support arithmetic
on 32-bit integers, and how long does it take?

• How can one possibly compute me mod n for 1024 bit numbers. me, before taking the
remainder, is a number that is roughly 21024 bits long. No computer has enough memory to
store that number, and no computer is fast enough to compute it.

To answer these questions will require the study of clever algorithms for primality testing, fast ex-
ponentiation, and modular inverse computation. It will also require some theory of Zn, the integers
modulo n, and some properties of numbers n that are the product of two primes. In particular, the
security of RSA is based on the premise that the factoring problem on large integers is infeasible,
that is, given n that is known to be the the product of two primes p and q, to find p and q.

5 Number Theory Review

We next review some number theory that is needed for understanding RSA. These lecture notes
only provide a high-level overview. Further details are contained in course handouts 3–5 and in
Chapters 5 and 6 of the textbook.

2In the remainder of this discussion, messages and ciphertexts will refer to integers in the range 0 to n− 1, not to bit
strings.

CPSC 467b Lecture Notes, Week 4 (rev. 4) 5

5.1 Basic definitions

Zn = {0, 1, . . . , n− 1}

Zn is an Abelian group under addition (+).

Z∗n = {x ∈ Zn | gcd(x, n) = 1}

Z∗n is an Abelian group under multiplication (·). Euler’s totient (φ) function is defined to be the
cardinality of Z∗n:

φ(n) = |Z∗n|

Properties of φ(n):

1. If p is prime, then φ(p) = p− 1.

2. More generally, if p is prime and k ≥ 1, then φ(pk) = pk − pk−1 = (p− 1)pk−1.

3. If gcd(m,n) = 1, then φ(mn) = φ(m)φ(n).

These properties enable one to compute φ(n) for all n ≥ 1 provided one knows the factorization of
n. For example,

φ(126) = φ(2)φ(32)φ(7) = (2− 1)(3− 1)(32−1)(7− 1) = 1 · 2 · 3 · 6 = 36.

The 36 elements of Z∗126 are: 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 65,
67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103, 107, 109, 113, 115, 121, 125.

5.2 Modular arithmetic

There are several closely-related notions associated with “mod”.
First of all, mod is a binary operator. If a ≥ 0 and b ≥ 1 are integers, then a mod b is the

remainder of a divided by b. When either a or b is negative, there is no consensus on the definition of
mod. We are only interested in mod for positive b, and we find it convenient in that case to define
(a mod b) to be the smallest non-negative integer r such that a = bq + r for some integer q. Under
this definition, we always have that r = (a mod b) ∈ Zb. For example (−5 mod 3) = 1 ∈ Z3

since for q = −2, we have −5 = 3 · (−2) + 1. Note that in the C programming language, the mod
operator % is defined differently, so a % b 6= a mod b when a is negative and b positive.3

Mod is also used to define a relationship on integers:

a ≡ b (mod n) iff n |a− b.

That is, a and b have the same remainder when divided by n. An immediate consequence of this
definition is that

a ≡ b (mod n) iff (a mod n) = (b mod n).

Thus, the two notions of mod aren’t so different after all!
When n is fixed, the resulting two-place relationship ≡ is an equivalence relation. Its equiva-

lence classes are called residue classes modulo n and are denoted using the square-bracket notation
3For those of you who are interested, the C standard defines a% b to be the number satisfying the equation (a/b)∗ b+

(a % b) = a. C also defines a/b to be the result of rounding the real number a/b towards zero, so −5/3 = −1. Hence,
−5 % 3 = −5− (−5/3) ∗ 3 = −5 + 3 = −2.

6 CPSC 467b Lecture Notes, Week 4 (rev. 4)

[b] = {a | a ≡ b (mod n)}. For example, for n = 7, we have [10] = {. . .− 11,−4, 3, 10, 17, . . .}.
Clearly, [a] = [b] iff a ≡ b (mod n). Thus, [−11], [−4], [3], [10], [17] are all names for the
same equivalence class. We choose the unique integer in the class that is also in Zn to be the
canonical or preferred name for the class. Thus, the canonical name for the class containing 10 is
[10 mod 7] = [3].

The relation≡ (mod n) is a congruence relation with respect to addition, subtraction, and mul-
tiplication of integers. This means that for each of these arithmetic operations�, if a ≡ a′ (mod n)
and b ≡ b′ (mod n), then a � b ≡ a′ � b′ (mod n). This implies that the class containing the
result of a + b, a − b, or a × b depends only on the classes to which a and b belong and not the
particular representatives chosen. Hence, we can define new addition, subtraction, and multiplica-
tion as operations on equivalence classes, or alternatively, regard them as operations directly on Zn
defined by

a⊕ b = (a+ b) mod n
a	 b = (a− b) mod n
a⊗ b = (a× b) mod n

(1)

	Message authentication codes (MACs)
	Computing MACs
	Asymmetric cryptosystems
	RSA
	Number Theory Review
	Basic definitions
	Modular arithmetic

