
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467b: Cryptography and Computer Security
Week 5 (rev. 4)

Professor M. J. Fischer February 8 & 10, 2005

Lecture Notes, Week 5

1 Computation with Big Integers

Recall that RSA is based on a number n chosen to be the product of two distinct large primes p and
q. The public key e and private key d are numbers in Z∗n and are related by ed ≡ 1 (mod φ(n)).
The RSA encryption and decryption functions are then

Ee(m) = me mod n

Dd(c) = cd mod n

Before we complete our discussion of RSA, we need to show how to generate suitable numbers n,
e, and d, and we need to show that Dd really decrypts messages encrypted by Ee. We also need to
discuss reasons for believing that RSA is secure, given that n, p, q are sufficiently large.

What is sufficiently large? That’s hard to say, but p and q are typically chosen to be roughly 512
bits long when written in binary, in which case n is about 1024 bits long. Already this presents a
major computational problem since the arithmetic built into typical computers can handle only 32
bit integers (or 64 bit integers for the most advanced technology). This means that all arithmetic on
large integers must be performed by software routines.

The straightforward algorithms for addition and multiplication that you learned in grade school
have time complexities O(N) and O(N2), respectively, where N is the length of the integers in-
volved. Asymptotically faster multiplication algorithms are known, but they involve large constant
factor overheads, so it’s not clear whether they are practical for numbers of the size we are talking
about. What is clear is that a lot of cleverness is possible in the careful implementation of even the
O(N2) multiplication algorithms, and a good implementation can be many times faster in practice
than a poor one. They are also not particularly easy to implement correctly since there are many
special cases that must be handled.

Most people choose to use big number libraries written by others rather than write their own
code. Two such libraries that you can use in this course are ln3 (the third in a succession of Large
Number packages by René Peralta) and gmp (Gnu Multiprecision Package). Ln3 provides a nice
C++ user interface but has some limitations on the size numbers that it can handle. I have made
it available on the Zoo in /c/cs467/ln3. Documentation is in /c/cs467/ln3/doc. Gmp
provides a large number of highly-optimized function calls for use with C and C++. It is preinstalled
on all of the Zoo nodes and supported by the open source community. Type info gmp at a shell
for documentation.

1.1 Exponentiation

We now turn to the basic operation of RSA, modular exponentiation of big numbers. This is the
problem of computing me mod n for big numbers m, e, and n.

The obvious way to compute this would be to compute t = me and then compute t mod n. The
problem with this approach is thatme is too big! m and e are both numbers about 1024 bits long, so

http://zoo.cs.yale.edu/classes/cs467/2005s/course/ln3/doc

2 CPSC 467b Lecture Notes, Week 5 (rev. 4)

their values are each about 21024. The value of t is then (21024)21024
. This number, when written in

binary, is about 1024 ∗ 21024 bits long, a number far larger than the number of atoms in the universe
(which is estimated to be only around 1080 ≈ 2266). The trick to get around this problem is to do
all arithmetic in Zn using equations (1) of lecture notes week 4, that is, reduce the result modulo
n after each arithmetic operation. The product of two length ` numbers is only length 2` before
reduction mod n, so one never has to deal with numbers longer than about 2048 bits.

Nevertheless, there is still a problem with the naive algorithm, for it will execute its main loop
e − 1 times. Since the value of e is roughly 21024, this would run longer than the current age of
the universe (which is estimated to be 15 billion years). Assuming one loop iteration could be
done in one microsecond (very optimistic seeing as each iteration requires computing a product and
remainder of big numbers), only about 30 × 1012 iterations could be performed per year, and only
about 450×1021 iterations in the lifetime of the universe. But 450×1021 ≈ 279, far less than e−1.

The trick here is to use a more efficient exponentiation algorithm based on repeated squaring. To
compute me mod n where e = 2k is a power of two requires only k squarings, i.e., one computes

m0 = m
m1 = (m0 ∗m0) mod n
m2 = (m1 ∗m1) mod n

...
mk = (mk−1 ∗mk−1) mod n.

Clearly, each mi = m2i mod n. me for values of e that are not powers of 2 can be obtained as the
product modulo n of certain mi’s. In particular, express e in binary as e = (bsbs−1 . . . b2b1b0)2.
Then mi is included in the final product if and only if bi = 1.

It is not necessary to perform this computation in two phases as described above. Rather, the two
phases can be combined together, resulting in a slicker and simpler algorithm that does not require
the explicit storage of the mi’s. I will give two versions of the resulting algorithm, a recursive
version and an iterative version. I’ll write both in C notation, but it should be understood that the C
programs only work for numbers smaller than 216. To handle larger numbers requires the use of big
number functions.

/* computes mˆe mod n recursively */
int modexp(int m, int e, int n)
{
int r;
if (e == 0) return 1; /* mˆ0 = 1 */
r = modexp(m*m % n, e/2, n); /* r = (mˆ2)ˆ(e/2) mod n */
if ((e&1) == 1) r = r*m % n; /* handle case of odd e */
return r;

}

This same idea can be expressed iteratively to achieve even greater efficiency.

/* computes mˆe mod n iteratively */
int modexp(int m, int e, int n)
{
int r = 1;
while (e > 0) {
if ((e&1) == 1) r = r*m % n;

CPSC 467b Lecture Notes, Week 5 (rev. 4) 3

e /= 2;
m = m*m % n;

}
return r;

}

The loop invariant is e > 0 ∧ (me0
0 mod n = rme mod n), where m0 and e0 are the initial values

of m and e, respectively. It is easily checked that this holds at the start of each iteration. If the loop
exits, then e = 0, so r is the desired result. Termination is ensured since e gets reduced during each
iteration. Note that the last iteration of the loop computes a new value of m that is never used. A
slight efficiency would result by restructuring the code to eliminate this unnecessary computation.

2 Some More Number Theory Review

Recall that in lecture notes week 4, section 5.1, it was claimed that Z∗n is an Abelian group under
multiplication (·) mod n. This means that it satisfies the following properties:

Associativity (·) is an associative binary operation on Z∗n. In particular, this means if x, y ∈ Z∗n,
then x · y ∈ Z∗n.

Identity 1 is an identity element for (·) in Z∗n, that is 1 · x = x · 1 = x for all x ∈ Z∗n.

Inverses For all x ∈ Z∗n, there exists another element x−1 ∈ Z∗n such that x · x−1 = x−1 · x = 1.

Commutativity (·) is commutative. (This is only true for Abelian groups.)

Example: Let n = 26 = 2 · 13. Then

Z∗26 = {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

and

φ(26) = |Z∗26| = 12.

The inverses of the elements in Z∗26 are given in Table 1. The bottom row of the table gives equiva-

Table 1: Table of inverses in Z∗26.

x 1 3 5 7 9 11 15 17 19 21 23 25

x−1 1 9 21 15 3 19 7 23 11 5 17 25
= 1 9 −5 −11 3 −7 7 −3 11 5 −9 −1

lent integers in the range [−12, . . . , 13]. This makes it apparent that (26− x)−1 = −x−1. In other
words, the last row reads back to front the same as it does from front to back except that all of the
signs flip from + to − or − to +, so once the inverses for the first six numbers are known, the rest
of the table is easily filled in.

4 CPSC 467b Lecture Notes, Week 5 (rev. 4)

Formula for Euler’s φ function

Theorem 1 Write n in factored form, so

n = pe11 · · · p
ek
k

where p1, . . . , pk are distinct primes and e1, . . . , ek are positive integers.1 Then

φ(n) = (p1 − 1) · pe1−1
1 · · · (pk − 1) · pek−1

k .

When p is prime, we have simply φ(p) = (p − 1), and for the product of two distinct primes,
φ(pq) = (p− 1)(q − 1). Thus, φ(26) = (13− 1)(2− 1) = 12, as we have seen.

Theorem 2 (Euler’s theorem) xφ(n) ≡ 1 (mod n) for all x ∈ Z∗n.

As a special case, we have

Theorem 3 (Fermat’s theorem) x(p−1) ≡ 1 (mod p) for all x, 1 ≤ x ≤ p− 1, where p is prime.

3 RSA Decryption

We now show why RSA decryption works. Recall that n = pq for large distinct primes p and q,
and φ(n) = |Z∗n| = (p − 1)(q − 1). Alice chooses the public key e and private key d to satisfy
e, d ∈ Z∗φ(n) and

ed ≡ 1 (mod φ(n)). (1)

The encryption function is Ee(m) = me mod n and decryption function is Dd(c) = cd mod n.
To be a proper cryptosystem, Ee() must be a one-to-one function, and Dd() must invert Ee()

on its range. That is, one must show

Dd(Ee(m)) = m

for all messages m. Plugging in the definitions of Dd and Ee, it is sufficient to verify that

(me)d ≡ m (mod n) (2)

By (1), we have ed = 1 + uφ(n) for some u. If m ∈ Z∗n, then (2) follows using Euler’s theorem:

(me)d ≡ med ≡ m1+uφ(n) ≡ m · (mφ(n))u ≡ m · 1u ≡ m (mod n).

What about the case of messages m ∈ Zn − Z∗n? There are several answers to this question.

1. For such m, either p|m or q|m (but not both because m < pq). If Alice ever sends such
a message and Eve is astute enough to compute gcd(m,n) (which she can easily do, see
below), then Eve will succeed in breaking the cryptosystem. So Alice doesn’t really want to
send such messages if she can avoid it.

2. If Alice sends random messages, her probability of choosing a message not in Z∗n is only about
2/
√
n. This is because the number of “bad” messages is only n−φ(n) = pq−(p−1)(q−1) =

p + q − 1 out of a total of n = pq messages altogether. If p and q are both 512 bits long,
then the probability of choosing a bad message is only 2 · 2512/21024 = 1/2511. Such a small
probability event will likely never occur during the known life of the universe.

3. For the purists out there, RSA does in fact work for all m ∈ Zn, even though Euler’s theorem
fails for m 6∈ Z∗n. For example, if m = 0, it is clear that (0e)d ≡ 0 (mod n), yet Euler’s
theorem fails since 0φ(n) 6≡ 1 (mod n). We omit the proof of this curiosity.

1By the fundamental theorem of arithmetic, every integer can be written uniquely in this way up to the ordering of the
factors.

CPSC 467b Lecture Notes, Week 5 (rev. 4) 5

4 Generating RSA Encryption and Decryption Exponents

We next turn to the question of how Alice chooses e and d to satisfy (1). One way she can do this
is to choose a random integer d ∈ Z∗φ(n) and then solve (1) for e. We will show how to do this in
Sections 6 and 7 below.

However, there is another issue, namely, how does Alice find d ∈ Z∗φ(n)? If Z∗φ(n) is large
enough, then she can just choose random elements from Zφ(n) until she encounters one that lies in
Z∗φ(n). But how large is large enough? If Z∗φ(n) is much smaller than φ(n) (the size of Zφ(n)), she
might have to search for a long time before finding a suitable d.

In general, Z∗m can be considerably smaller than m. For example, if m = |Zm| = 210, then
|Z∗m| = 48. In this case, the probability that a randomly-chosen element of Zm falls in Z∗m is only
48/210 = 8/35 = 0.228

The following theorem provides a crude lower bound on how small Z∗m can be relative to the
size of Zm that is nevertheless sufficient for our purposes.

Theorem 4 For all m ≥ 2,
|Z∗m|
|Zm|

≥ 1
1 + log2m

.

Proof: Write m in factored form as m =
∏t
i=1 p

ei
i , where pi is the ith prime that divides m and

ei ≥ 1. Then φ(m) =
∏t
i=1(pi − 1)pei−1

i , so

|Z∗m|
|Zm|

=
φ(m)
m

=
∏t
i=1(pi − 1)pei−1

i
∏t
i=1 p

ei
i

=
t
∏

i=1

(

pi − 1
pi

)

. (3)

To estimate the size of
∏t
i=1(pi − 1)/pi, note that (pi − 1)/pi ≥ i/(i + 1). This follows since

(x− 1)/x is monotonic increasing in x, and pi ≥ i+ 1. Then

t
∏

i=1

(

pi − 1
pi

)

≥
t
∏

i=1

(

i

i+ 1

)

=
t!

(t+ 1)!
=

1
t+ 1

. (4)

Clearly t ≤ log2m since 2t ≤
∏t
i=1 pi ≤ m. Combining this fact with equations (3) and (4) gives

the desired result.

For n a 1024-bit integer, φ(n) is also at most 1024 bits long, so the fraction of elements in Zφ(n)

that also lie in Z∗φ(n) is at least 1/1025. Therefore, the expected number of random trials before
Alice finds a number in Z∗φ(n) is provably at most 1025 and is most likely much smaller.

5 Euclidean algorithm

To test if d ∈ Z∗φ(n), Alice can test if gcd(d, φ(n)) = 1. How does she do this?
The greatest common divisor of two numbers a and b is easily found if a and b are already

given in factored form. Namely, let pi be the ith prime and write a =
∏

peii and b =
∏

p fii . Then
gcd(a, b) =

∏

p
min(ei,fi)
i . However, factoring is believed to be a hard problem, and no polynomial-

time factorization algorithm is currently known. Indeed, if it were, then Eve could use it to break
RSA, and RSA would be of no interest as a cryptosystem.

Euclid’s algorithm is remarkable, not only because it was discovered a very long time ago, but
also because it works without knowing the factorization of a and b. It relies on the equation

gcd(a, b) = gcd(a− b. b) (5)

6 CPSC 467b Lecture Notes, Week 5 (rev. 4)

which holds when a ≥ b. This allows the problem of computing gcd(a, b) to be reduced to the
problem of computing gcd(a − b, b), which is “smaller” if b > 0. Here we measure the size of the
problem (a, b) by the sum a + b of the two arguments. (5) leads in turn leads to an easy recursive
algorithm:

int gcd(int a, int b)
{
if (a < b) return gcd(b, a);
else if (b == 0) return a;
else return gcd(a-b, b);

}

Nevertheless, this algorithm is not very efficient, as you will quickly discover if you attempt to use
it, say, to compute gcd(1000000, 2).

Repeatedly applying (5) to the pair (a, b) until it can’t be applied any more produces the se-
quence of pairs (a, b), (a− b, b), (a− 2b, b), . . . , (a− qb, b). The sequence stops when a− qb < b.
But the number of times you can subtract b from a is just the quotient ba/bc, and the amount a− qb
that is left is just the remainder a mod b. Hence, one can go directly from the pair (a, b) to the pair
(a mod b, b). Since a mod b < b, it is also convenient to swap the elements of the pair. This results
in the Euclidean algorithm (in C notation):

int gcd(int a, int b)
{
if (b == 0) return a;
else return gcd(b, a % b);

}

6 Diophantine equations and modular inverses

Now that Alice knows how to choose d ∈ Z∗φ(n), how does she find e? That is, how does she solve
(1)? Note that e, if it exists, is a multiplicative inverse of d (mod n), that is, a number that, when
multiplied by d, gives 1.

Equation (1) is an instance of the general Diophantine equation

ax+ by = c (6)

Here, a, b, c are given integers. A solution consists of integer values for the unknowns x and y. To
put (1) into this form, we note that ed ≡ 1 (mod φ(n)) iff ed = 1+uφ(n) for some integer u. This
is seen to be an equation in the form of (6) where the unknowns x and y are e and u, respectively,
and a = d, b = −φ(n), and c = 1.

7 Extended Euclidean algorithm

It turns out that (6) has a solution iff gcd(a, b) | c. It can also be solved by a process akin to the
Euclidean algorithm, which we call the Extended Euclidean algorithm. Here’s how it works. The
algorithm generates a sequence of triples of numbers (ri, ui, vi), each satisfying the invariant

ri = aui + bvi (7)

CPSC 467b Lecture Notes, Week 5 (rev. 4) 7

The first two triples are (a, 1, 0) and (b, 0, 1). The algorithm generates triple i+ 2 from triples i and
i+ 1 much the same as the Euclidean algorithm generates (a mod b) from a and b. More precisely,
let qi+1 = bri/ri+1c. Then

ri+2 = ri − qi+1ri+1

ui+2 = ui − qi+1ui+1

vi+2 = vi − qi+1vi+1

Note that ri+2 = (ri mod ri+1), so one sees that the sequence of generated pairs (r1, r2), (r2, r3),
(r3, r4), . . . , is exactly the same as the sequence of pairs generated by the Euclidean algorithm. Like
the Euclidean algorithm, we stop when rt = 0. Then rt−1 = gcd(a, b), and from (7) it follows that

gcd(a, b) = aut−1 + bvt−1 (8)

If c = gcd(a, b), then x = ut−1 and y = vt−1 solves (6). If c = k gcd(a, b), then x = kut−1 and
y = kvt−1 solves (6). Otherwise, gcd(a, b) does not divide c, and one can show that (6) has no
solution. See Handout 4 for further details, as well as for a discussion of how many solutions (6)
has and how to find all solutions.

8 Probabilistic Primality Testing

The remaining problem for generating an RSA key is how to find two large primes p and q that,
when multiplied together, form the RSA modulus n.

Alice uses a similar procedure to find p and q as she did to find a suitable d. Namely, she
repeatedly chooses p and q at random from numbers of the right bit length until she finds numbers
with the right properties. All we need for RSA are that p and q be distinct primes. This raises the
same two questions we had in choosing d: How dense are the “good” values of p and q (that is, how
likely is a chosen number to be a prime), and how does Alice test if a number is prime? We defer
the first question and look at the question of primality testing.

Until very recently, no deterministic polynomial time algorithm was known for testing primality,
and even now it is not known whether any deterministic algorithm is feasible in practice. However,
there do exist fast probabilistic algorithms for testing primality. These algorithms consist of a set
of tests. Each test operates on a number n and either succeeds in proving that n is composite
(not prime), or it fails to show that n is composite. There are two reasons that a test might fail.
One possibility is that n really is composite, but the test is not able to show that fact. The other
possibility is that n is prime (and hence no test could prove otherwise).

The key to a useful probabilistic primality algorithm is to find a set of tests with the property that
for every composite number n, a fraction c > 0 of the tests succeed on n. Suppose for simplicity
that c = 1/2 and one applies 100 randomly-chosen tests to n. If any of them succeeds, we have a
proof that n is composite. If all fail, we don’t know whether or not n is prime or composite. But
what we do know is that if n is composite, the probability that all 100 tests fail is only 1/2100.

In practice, what we do is to choose candidates for p and q at random and apply some fixed
number of randomly-chosen tests to each candidate, rejecting the candidate if it proves to be com-
posite. We keep the candidate (and assume it to be prime) if all of the tests for compositeness fail.
We never know whether or not our resulting numbers p and q really are prime, but we can adjust the
parameters to reduce the probability to an acceptable level that we will end up a number p or q that
is not prime (and hence that we have unknowingly generated a bad RSA key).

8 CPSC 467b Lecture Notes, Week 5 (rev. 4)

9 Chinese Remainder Theorem

Let n1, n2, . . . , nk be positive pairwise relatively prime positive integers2, let n =
∏k
i=1 ni, and let

ai ∈ Zi for i = 1, . . . , k. Consider the system of congruence equations with unknown x:

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

...
x ≡ ak (mod nk)

(9)

The Chinese Remainder Theorem says that (9) has a unique solution in Zn.
To solve for x, let

Ni = n/ni = n1n2 . . . ni−1
︸ ︷︷ ︸

·ni+1 . . . nk
︸ ︷︷ ︸

,

and compute Mi = N−1
i mod ni, for 1 ≤ i ≤ k. Note that N−1

i (mod ni) exists since
gcd(Ni, ni) = 1 by the pairwise relatively prime condition. We can compute N−1

i using the meth-
ods of section 7. Now let

x = (
k
∑

i=1

aiMiNi) mod n (10)

If j 6= i, then MjNj ≡ 0 (mod ni) since ni|Nj . On the other hand, MiNi ≡ 1 (mod ni) by
definition of Mi. Hence,

x ≡
k
∑

i=1

aiMiNi ≡ 0a1 + . . .+ 0ai−1
︸ ︷︷ ︸

+1ai + 0ai+1 . . . 0ak
︸ ︷︷ ︸

≡ ai (mod ni) (11)

for all 1 ≤ i ≤ k, establishing that (10) is a solution of (9).
To see that the solution is unique in Zn, let χ be the mapping x 7→ (x mod n1, . . . , x mod nk).

χ is a surjection3 from Zn to Zn1 × . . . × Znk since we have just shown for all (a1, . . . , ak) ∈
Zn1 × . . . × Znk that there exists x ∈ Zn such that χ(x) = (a1, . . . , ak). Since also |Zn| =
|Zn1 × . . .× Znk |, χ is a bijection, and (9) has only one solution in Zn.

9.1 Homomorphic property of χ

The bijection χ is interesting in its own right, for it establishes a one-to-one correspondence between
members of Zn and k-tuples (a1, . . . , ak) in Zn1× . . .×Znk . This lets us reason about and compute
with k-tuples and then translate the results back to Zn.

The homomorphic property of χ means that performing an arithmetic operation on x ∈ Zn cor-
responds to performing the similar operation on each of the components of χ(x). More precisely, let
� be one of the arithmetic operations +, −, or ×. If χ(x) = (a1, . . . , ak) and χ(y) = (b1, . . . , bk),
then

χ((x� y) mod n) = ((a1 � b1) mod n1, . . . , (ak � bk) mod nk). (12)

In other words, if one first performs z = (x� y) mod n and then computes z mod ni, the result is
the same as if one instead first computed ai = (x mod ni) and bi = (y mod ni) and then performed
(ai� bi) mod ni. This relies on the fact that (z mod n) mod ni = z mod ni, which holds because
ni |n.

2This means that gcd(ni, nj) = 1 for all 1 ≤ i < j ≤ k.
3A surjection is an onto function.

CPSC 467b Lecture Notes, Week 5 (rev. 4) 9

9.2 RSA Decryption, part 2

In section 3, we showed that RSA decryption works when m, c ∈ Z∗n. We are now in a position to
show that it works for all m, c ∈ Zn.

Let n = pq be an RSA modulus, p, q distinct primes, and let e and d be the RSA encryption and
decryption exponents, respectively. We show med ≡ m (mod n) for all m ∈ Zn.

Define a = (m mod p) and b = (m mod q), so

m ≡ a (mod p)
m ≡ b (mod q)

(13)

Raising both sides to the power ed gives

med ≡ aed (mod p)
med ≡ bed (mod q)

(14)

We now argue that aed ≡ a (mod p). If a ≡ 0 (mod p), then obviously aed ≡ 0 ≡ a (mod p).
If a 6≡ 0 (mod p), then gcd(a, p) = 1 since p is prime, so a ∈ Z∗p. By Euler’s theorem,

aφ(p) ≡ 1 (mod p)

Since ed ≡ 1 (mod φ(n)), we have ed = 1 + uφ(n) = 1 + uφ(p)φ(q) for some integer u. Hence,

aed ≡ a1+uφ(p)φ(q) ≡ a ·
(

aφ(p)
)uφ(q)

≡ a · 1uφ(q) ≡ a (mod p) (15)

Similarly,
bed ≡ b (mod q) (16)

Combining the pair (14) with (15) and (16) yields

med ≡ a (mod p)
med ≡ b (mod q)

Thus, med is a solution to the system of equations

x ≡ a (mod p)
x ≡ b (mod q)

(17)

From (13), m is also a solution of (17). By the Chinese Remainder Theorem, the solution to (17) is
unique modulo n, so med ≡ m (mod n) as desired.

10 Probabilistic Primality Testing, part 2

10.1 Tests of compositeness

In section 8, we described a probabilistic algorithm based on a set of tests. In a little greater detail, a
test of compositeness is a set T = {τ1, . . . , τs}, where τi : Z→ {true, false} has the property that

τa(n) = true⇒ n is composite.

If τa(n) = true, we say that τa(n) succeeds, and a is a witness to the compositeness of n. If
τa(n) = false, then the test fails and gives no information about the compositeness of n. Clearly, if
n is prime, then all τa fail on n, but if n is composite, then τa(n) may either succeed or fail.

Here are two examples of tests for compositeness.

10 CPSC 467b Lecture Notes, Week 5 (rev. 4)

1. Let δa(n) = (2 ≤ a ≤ n − 1 and a|n). Test δa succeeds on n if a is a proper divisor of n,
which indeed implies that n is composite. Thus, {δa}a∈Z is a valid test of compositeness.
Unfortunately, it isn’t very useful in a probabilistic primality algorithm since the number of
tests that succeed when n is composite are too small. For example, if n = pq for p, q prime,
then the only tests that succeed are δp and δq.

2. Let ζa(n) = (2 ≤ a ≤ n − 1 and an−1 6≡ 1 (mod n). By Fermat’s theorem, if p is prime
and gcd(a, p) = 1, then ap−1 ≡ 1 (mod p). Hence, if ζa(n) succeeds, it must be the case
that n is not prime. This shows that {ζa}a∈Z is a valid test of compositeness. For this test
to be adequate for a probabilistic primality algorithm, we would need to know that for all
composite numbers n, a significant fraction of the tests ζa succeed on n. Unfortunately, there
are certain compositeness numbers n called pseudoprimes for which all of the tests ζa fail.
Such n are fairly rare, but they do exist. The ζa tests are unable to distinguish pseudoprimes
from true primes, so they are not adequate for testing primality

We will return to this topic later when we have developed sufficient number theory to present a
test of compositeness that does have the properties need to make it useful in probabilistic primality
algorithms.

10.2 Prime Number Theorem

Even assuming Alice has a feasible algorithm for testing whether or not an arbitrary number n is
prime, she still has the problem of finding a prime. If the primes are sufficiently dense, then it works
for her to simply choose large numbers at random, testing them in turn until she encounters one that
is prime.

The prime number theorem allows her to estimate on how many numbers she will have to try
before encountering a primer. Let π(n) be the number of numbers≤ n that are prime. For example,
π(10) = 4 since there are four primes ≤ 10, namely, 2, 3, 5, 7. The prime number theorem asserts
that π(n) is “approximately”4 n/(lnn), where lnn is the natural logarithm (loge) of n. Alice’s
chance of a randomly picked number in Zn being prime is given by the ratio π(n)/n ≈ 1/(lnn).
The expected number of trials before Alice encounters a prime is the inverse of that probability, that
is, lnn. For example, if n = 21024, then the expected number of random probes to find a prime in
Zn is lnn = 1024 ln 2 = 1024× 0.693 . . . ≈ 710.

4We ignore the critical issue of how good an approximation this is in these notes. The interested reader is referred to
a good mathematical text on number theory.

	Computation with Big Integers
	Exponentiation

	Some More Number Theory Review
	RSA Decryption
	Generating RSA Encryption and Decryption Exponents
	Euclidean algorithm
	Diophantine equations and modular inverses
	Extended Euclidean algorithm
	Probabilistic Primality Testing
	Chinese Remainder Theorem
	Homomorphic property of
	RSA Decryption, part 2

	Probabilistic Primality Testing, part 2
	Tests of compositeness
	Prime Number Theorem

