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1 RSA Security

Several possible attacks on RSA are discussed below and their relative computational difficulties
discussed.

1.1 Factoring n

The security of RSA depends on the computational difficulty of several different problems, corre-
sponding to different ways that Eve might attempt to break the system. The first of these is the RSA
factoring problem: Given a number n that is known to be the product of two primes p and ¢, find p
and g. Clearly if Eve can find p and ¢, then she can compute the decryption key d from the public
encryption key e (in the same way that Alice did when generating the key) and subsequently decrypt
all ciphertexts.

1.2 Computing ¢(n)

Eve doesn’t really need to know the factors of n in order to compute d. It is enough for her to know
¢(n). Computing ¢(n) is no harder than factoring n since ¢(n) is easily computed given the factors
of n, but is it perhaps easier? If it were, then Eve would have a possible attack on RSA different
from factoring n. It turns out that it is not easier, for if Even knows ¢(n), then she can factor n. She
simply sets up the system of quadratic equations

n o= pq
¢(n) = (p—1)(¢—1)

in two unknowns p and ¢ and solves for p and ¢ using standard methods of algebra.

1.3 Finding d

Another possibility is that Eve might somehow be able to compute d from e and n even without the
ability to factor n or compute ¢(n). That would represent yet another attack that couldn’t be ruled
out by the assumption that the RSA factoring problem is hard. However, that too is not possible, as
we now show.

Suppose Eve knows n and e and is somehow able to obtain d. Then Eve can factor n by a
probabilistic algorithm. The algorithm is presented in Figurel.

For each a chosen at random from Z, define a sequence by, by, . . ., bs, where b; = a*"* mod n,
0 < ¢ < s. Each number in the sequence is the square of the number preceding it modulo n.
The last number in the sequence is 1 by Euler’s theorem and the fact that ¢(n) | (ed — 1). Since
1?2 mod n = 1, every element of the sequence following the first 1 is also 1. Hence, the sequence
consists of a (possibly empty) block of non-1 elements, following by a block of 1’s.
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To factor n:
/* Find s, t such that ed — 1 = 2%t and ¢ is odd */
s=0;t=ed—1;
while (¢ is even ) {s++; t/=2;}

/* Search for non-trivial square root of 1 (mod n) */
do {
/* Find a random square root b of 1 (mod n) */
choose a € Z;, at random;
b = a’ mod n;
while (b2 £ 1 (mod n)) b= b? mod n;
} while (b= +£1 (mod n));

/* Factor n */
p=ged(b—1,n);
q=n/p;

return (p, q);

Figure 1: Algorithm for factoring n given d.

It is easily verified that by is the value of b when the innermost while loop is first entered, and
by, is the value of b after the k" iteration of that loop. The loop executes at most s — 1 times since
it terminates just before the first 1 is encounter, that is, when b> = 1 (mod n). At this time, b = by,
is a square root of 1 (mod n).

Over the reals, we know that each positive number has two square roots, one positive and one
negative, and no negative numbers have real square roots. Over Z; for n = pg, it turns out that
1/4 of the numbers have square roots, and each number that has a square root actually has four.
Since 1 does have a square root modulo n (itself), there are four possibilities for b: £1 mod n and
+r mod n for some r € Z7,r # +1 (mod n).

The do loop terminates if and only if b # +1 (mod n). At that point we can factor n. Since
b2 =1 (mod n), we have n|(b> — 1) = (b+ 1)(b— 1). But since b # 1 (mod n), n does not
divide b + 1 and n does not divide b — 1. Therefore, one of the factors of n divides b + 1 and the
other divides b — 1. Hence, gcd(b — 1,n) is a non-trivial factor of n.

It can be shown that there is at least a 0.5 probability that b # +1 (mod n) for the b computed
by this algorithm in response to a randomly chosen a € Z;,. Hence, the expected number of itera-
tions of the do loop is at most 2. (See Evangelos Kranakis, Primality and Cryptography, Theorem
5.1 for details.)

1.4 Finding plaintext

Eve isn’t really interested in factoring 7, computing ¢(n), or finding d, except as a means to read
Alice’s secret messages. Hence, the problem we would like to be hard is the problem of computing
the plaintext m given an RSA public key (n,e) and a ciphertext c. The above shows that this
problem is no harder than factoring n, computing ¢(n), or finding d, but it does not rule out the
possibility of some clever way of decrypting messages without actually finding the decryption key.
Perhaps there is some feasible probabilistic algorithm that finds m with non-negligible probability,
maybe not even for all ciphertexts ¢ but for some non-negligible fraction of them. Such a method
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would “break” RSA and render it useless in practice. No such algorithm has been found, but neither
has the possibility been ruled out, even under the assumption that the factoring problem itself is
hard.

2 Primitive Roots

Let g € Z} and consider the successive powers g, g%, g3, .. ., all taken modulo n. Because Z is
finite, this sequence must eventually repeat. By Euler’s theorem, this sequence contains 1, namely,
g®™) . Let k be the smallest positive number such that g* = 1 (in Z7). We call k the order of g
and write ord(g) = k. The elements {g, g%, ..., ¢g* = 1} form a subgroup S of Z?. The order of S
(number of elements in S) is ord(g); hence ord(g) | ¢(n). We say that g generates S and that S is
cyclic.

We say g is a primitive root of n if g generates Z,, that is, every element of Z;, can be written
as ¢ raised to some power modulo n. By definition, this holds if and only if ord(g) = ¢(n). Not
every integer n has primitive roots. By Gauss’s theorem, the numbers having primitive roots are
1,2, 4, p*, 2p*, where p is an odd prime and k > 1. In particular, every prime has primitive roots.

The number of primitive roots of p is ¢(4(p)). This is because if g is a primitive root of p and
T € Zj;(p), then ¢” is also a primitive root of p.

Lucas test: g is a primitive root of p if and only if

g(p—l)/q £ 1 (mod p)

for all ¢ > 1 such that ¢ | (p — 1). Clearly if the test fails for some ¢, then ord(g) < (p —1)/q <
p — 1 = ¢(p), so g is not a primitive root of p. Conversely, if ord(g) < ¢(p), then the test will fail
for ¢ = (p — 1)/ord(g), which is one of the ¢’s included in the test since ord(g) | ¢(p).

A drawback to the Lucas test is that one must try all the divisors of p — 1, and there can be
many. Moreover, to find the divisors efficiently implies the ability to factor. Thus, it does not lead to
an efficient algorithm for finding a primitive root of an arbitrary prime p. However, there are some
special cases which we can handle.

Let p and ¢ be odd primes such that p = 2¢g + 1. There are lots of examples of such pairs,
e.g.,q = 41 and p = 83. In this case, p — 1 = 2q, so p — 1 is easily factored and the Lucas
test easily employed. How many primitive roots of p are there? From the above, the number
is ¢(é(p)) = ¢(p — 1) = ¢(2)¢(q) = g — 1. Hence, the density of primitive roots in Zj is
(g—1)/(p—1) = (¢—1)/2q ~ 1/2. This makes it easy to find primitive roots of p probabilistically
— choose a random element a € Z;, and apply the Lucas test to it.

We defer the question of the density of primes ¢ such that 2¢ + 1 is also prime but remark that
we can relax the requirements a bit. Suppose we start with a prime ¢ and then consider the numbers
2¢+1,3q+2,4qg+ 1, ... until we find a prime p = uqg + 1 in this sequence. By the prime number
theorem, approximately one out of every In(g) numbers around the size of ¢ will be prime. While
that applies to randomly chosen numbers, not the numbers in this particular sequence, there is at
least some hope that the density of primes will be similar. If so, we can expect that v will be about
In(gq), in which case it can be easily factored using exhaustive search. At that point, we can apply
the Lucas test as before to find primitive roots.

3 Discrete Logarithm

Let y = b* over the reals. The ordinary base-b logarithm is the inverse of the exponential function,
so logy,(y) = . The discrete logarithm is defined similarly, but now arithmetic is performed in Z;
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for a prime p. In particular, the discrete log to the base b of y modulo p is defined to be the least
non-negative integer z such that y = b* (mod p) (if it exists), and we write = log;(y) mod n.
If b is a primitive root of p, then log,(y) is defined for every y € Z.

The discrete log problem is the problem of computing log, (y) mod p given a prime p and prim-
itive root b of p. No known efficient algorithm is known for this problem and it is believed to be
intractable. However, it’s inverse, the function power,(z) = b* mod p, is easily computable, so
power, is an example of a so-called one-way function, that is a function that is easy to compute but
hard to invert.

4 Diffie-Hellman Key Exchange

Alice Bob
Choose random = € Z ;). Choose random y € Z ).
a = ¢g® mod p. b= g¥ mod p.
Send a to Bob. Send b to Alice.
ko = b® mod p. ky = a¥ mod p.

Figure 2: Diffie-Hellman Key Exchange Protocol.

The key exchange problem is for Alice and Bob to agree on a common random key k. One way
for this to happen is for Alice to choose £ at random and then communicate it to Bob over a secure
channel. But that presupposes the existence of a secure channel. The Diffie-Hellman Key Exchange
protocol allows Alice and Bob to agree on a secret k without having prior secret information and
without giving an eavesdropper Eve any information about k. The protocol is given in Figure 2.
We assume that p and g are publicly known, where p is a large prime and g a primitive root of p.
Clearly, k, = kp since k, = b* = ¢"¥ = oY = k;, (mod p). Hence, k = k, = kj is a common
key. In practice, Alice and Bob can use this protocol to generate a session key for a symmetric
cryptosystem, which then can subsequently use to exchange private information.

The security of this protocol relies on Eve’s presumed inability to compute k& from a and b
and the public information p and g. This is sometime called the Diffie-Hellman problem and, like
discrete log, is believed to be intractable. Certainly the Diffie-Hellman problem is no harder that
discrete log, for if Eve could find the discrete log of a, then she would know z and could compute
k, the same way that Alice does. However, it is not known to be as hard as discrete log.

5 ElGamal Key Agreement

A variant of the above algorithm has Bob going first followed by Alice, as shown in Figure 3. The
difference here is that Bob completes his action at the beginning and no longer has to communicate
with Alice. Alice, at a later time, can complete her half of the protocol and send a to Bob, at which
point Alice and Bob share a key.

This is just the scenario we want for public key cryptography. Bob generates a public key
(p, g,b) and a private key (p, g,y). Alice (or anyone who obtains Bob’s public key) can complete
the protocol by sending a to Bob. This is the idea behind the ElGamal public key cryptosystem.
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Alice Bob

Choose random y € Z,).
b = ¢g¥ mod p.
Send b to Alice.

Choose random = € Zy;).

a = ¢g® mod p.

Send a to Bob.

ke = b* mod p. kpy = a¥ mod p.

Figure 3: ElGamal Variant of Diffie-Hellman Key Exchange.

Assume Alice knows Bob’s public key (p, g, b). To encrypt a message m, she first completes
her part of the protocol of Figure 3 to obtain numbers a and k. She then computes ¢ = mk mod p
and sends the pair (a, ¢) to Bob. When Bob gets this message, he first uses a to complete his part of
the protocol and obtain k. He then computes m = k~'c mod p.

While the ElGamal cryptosystem uses the simple encryption function Ey(m) = mk mod p to
actually encode the message, it should be clear that any symmetric cryptosystem could be used at
that stage. An advantage of using a standard system such as AES is that long messages can be sent
following only a single key exchange.

Putting this all together gives us the following variant of the ElGamal public key cryptosystem.
As before, Bob generates a public key (p, g, b) and a private key (p, g,y). To encrypt a message m
to Bob, Alice first obtains Bob’s public key and chooses a random = € Z,). She next computes
a = g* mod p and k = b* mod p. She then computes

~

E(p,g,b) (m) = (aka(m))

and sends it to Bob. Here, E is the encryption function of a specified symmetric cryptosystem. Bob
receives a pair (a, ¢). To decrypt, Bob computes £ = a¥ mod p and the computes m = D (c).

We remark that a new element has been snuck in here. The ElGamal cryptosystem and its
variants require Alice to generate a random number which is then used in the course of encryption.
Thus, the resulting encryption function is a random function rather than an ordinary function. A
random function is one that can return different values each time it is called, even for the same
arguments. The way to view a random function is that it specifies a probability distribution on the
output space that depends on its arguments.

In the case of E;, 4 (m) each message m has many different possible encryptions. An advan-
tage of such a probabilistic encryption system is that Eve can no longer use the public encryption
function to check a possible decryption, for even if she knows m, she cannot verify m is the correct
decryption of (a, c) simply by computing E,, ;) (m) as she could do for a deterministic cryptosys-
tem such as RSA. Two disadvantages of course are that Alice must have a source of randomness in
order to use the system, and the ciphertext is longer than the corresponding plaintext.
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6 Quadratic Residues

6.1 Squares and square roots

A number a € Z is called a quadratic residue modulo n if there is some b € Z such that b*> = a
(mod n). bis said to be a square root of a (mod n). We let

QR,, = {a € Z} | a is a quadratic residue modulo n}.

and we denote the set of non-quadratic residues by QNR,, = Z> — QR,,.

6.2 Square roots modulo a prime

Claim 1 For an odd prime p, every a € QR,, has exactly two square roots in Z}, and exactly 1/2 of
the elements of Zy, are quadratic residues.

For example, take p = 11. The following table shows all of the elements of Z7; and their squares.

a a® mod 11
1 1
2 4
3 9
4 5
5 3
6 =-5 3
7T =—-4 5
8§ =-3 9
9 =-2 4
10 =-1 1

Thus, we see that QR,; = {1, 3,4,5,9} and QNR;; = {2,6,7,8,10}.

Proof: We now prove Claim 1. Consider the mapping sq : Z;, — QR,, defined by b — b2 mod p.
We show that this is a 2-to-1 mapping from Z;, onto QR,,.

Leta € QR,, and let b?> = a (mod p) be a square root of a. Then —b is also a square root of a,
and b # —b (mod p) since p 1 2b. Hence, a has at least two distinct square roots (mod n). Now
let ¢ be any square root of a.

¢ =a="0" (mod p).

Then p|c® — b2, s0 p| (¢ — b)(c + b). Since p is prime, the either p | (¢ — b), in which case ¢ = b
(mod p), or p|(c + b), in which case ¢ = —b (mod p). Hence ¢ = +b (mod p). Since ¢ was an
arbitrary square root of a, it follows that +b are the only two square roots of a. Hence, sq() is a
2-to-1 function, and [QR,| = %|Z;‘,| as desired. [ |

6.3 Square roots modulo the product of two primes

Claim 2 Let n = pq for p, q distinct odd primes. Then every a € QR,, has exactly four square
roots in L, and exactly 1/4 of the elements of 'Z;, are quadratic residues.
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Proof: Consider the mapping sq : Z¥ — QR,, defined by b — b?> mod n. We show that this is a
4-to-1 mapping from Z onto QR,,.

Let a € QR,, and let b*> = a (mod n) be a square root of a. Then also b*> = a (mod p)
and b> = a (mod q), so b is a square root of a (mod p) and b is a square root of a (mod q).
Conversely, if b, is a square root of & (mod p) and b, is a square root of a (mod ¢), then by the
Chinese Remainder theorem, the unique number b € Z7 such that b = b, (mod p) and b = b,
(mod g) is a square root of @ (mod n). Since a has two square roots mod p and two square
roots mod ¢, it follows that a has four square roots mod n. Thus, sq() is a 4-to-1 function, and
|QR,,| = |Z;| as desired. [ |
6.4 Euler criterion

There is a simple test due to Euler for whether a number is in QR,, for p prime.

Claim 3 (Euler Criterion):
a € QR, iff a® /2 =1 (mod p).
Proof: Leta € QR,, and let b* = a (mod p). Then
a2 = (p?)P=D/2 = pp=1 =1 (mod p)

by Euler’s theorem.
For the other direction, suppose a?~1/2 = 1 (mod p). Let g be a primitive root of p, and
choose k so that a = g* (mod p). Then

aP—1/2 = (gk)(p—l)/2 = g(p—l)k/2 =1 (mod p)

Because g is a primitive root, ¢ = 1 (mod p) implies that £ is a multiple of p — 1 for any £. Taking
¢ = (p—1)k/2, we have that p — 1| (p — 1)k/2, from which we conclude that 2|k. Hence, k/2 is
an integer, and b = ¢*/? is a square root of a, so a € QR,. |
6.5 Finding square roots

The Euler criterion lets us test membership in QR,, for prime p, but it doesn’t tell us how to find
square roots. In case p = 3 (mod 4), there is an easy algorithm for finding the square roots of any
member of QR,,.

Claim4 Letp =3 (mod 4), a € QR,,. Then b = a Pt/ is a square root of a (mod p).

Proof: Under the assumptions of the claim, p + 1 is divisible by 4, so (p + 1)/4 is an integer. Then

b2 = (a(p+1)/4)2 = a(p+1)/2 = a1+(p71)/2 =aq - a(pfl)/2 =a-1=a (mod p)

by the Euler Criterion (Claim 3). [ |
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