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1 QR Probabilistic Cryptosystem

Let n = pq, p, q distinct odd primes. We can divide the numbers in Z∗n into four classes depending
on their membership in QRp and QRq.1 Let Q11

n be those numbers that are quadratic residues mod
both p and q; let Q10

n be those numbers that are quadratic residues mod p but not mod q; let Q01
n

be those numbers that are quadratic residues mod q but not mod p; and let Q00
n be those numbers

that are neither quadratic residues mod p nor mod q. Under these definitions, Q11
n = QRn and

Q00
n ∪Q01

n ∪Q10
n = QNRn.

Fact Given a ∈ Q00
n ∪ Q11

n , there is no known feasible algorithm for determining whether or not
a ∈ QRn that gives the correct answer significantly more than 1/2 the time.

The Goldwasser-Micali cryptosystem is based on this fact. The public key consist of a pair
e = (n, y), where n = pq for distinct odd primes p, q, and y ∈ Q00

n . The private key consists of p.
The message space isM = {0, 1}.

To encrypt m ∈ M, Alice chooses a random a ∈ QRn. She does this by choosing a random
member of Z∗n and squaring it. If m = 0, then c = a mod n. If m = 1, then c = ay mod n. The
ciphertext is c.

It is easily shown that if m = 0, then c ∈ Q11
n , and if m = 1, then c ∈ Q00

n . One can also show
that every a ∈ Q11

n is equally likely to be chosen as the ciphertext in casem = 0, and every a ∈ Q00
n

is equally likely to be chosen as the ciphertext in casem = 1. Eve’s problem of determining whether
c encrypts 0 or 1 is the same as the problem of distinguishing between membership in Q00

n and Q11
n ,

which by the above fact is believed to be hard. Anyone knowing the private key p, however, can use
the Euler Criterion to quickly determine whether or not c is a quadratic residue mod p and hence
whether c ∈ Q11

n or c ∈ Q00
n , thereby determining m.

2 Legendre Symbol

Recall that QRn ⊆ Z∗nis the set of quadratic residues (perfect squares) modulo n. Let p be an odd
prime, a ∈ Zp. The Legendre symbol

(

a
p

)

is a number in {−1, 0,+1}, defined as follows:

(

a

p

)

=











+1 if a ∈ QRp

0 if p |a
−1 if a ∈ Z∗p −QRp

By the Euler Criterion (see lecture notes week 6, section 6.4), we have

1To be strictly formal, we classify a ∈ Z∗n according to whether or not (a mod p) ∈ QRp and whether or not
(a mod q) ∈ QRq .
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Theorem 1 Let p be an odd prime, a ∈ Z∗p. Then
(

a

p

)

= a( p−1
2 ) (mod p)

The Legendre symbol satisfies the following multiplicative property:

Fact Let p be an odd prime, a1, a2 ∈ Z∗p. Then
(

a1a2

p

)

=
(

a1

p

) (

a2

p

)

Not surprisingly, if a1 and a2 are both quadratic residues, then so is a1a2. This shows that the fact
is true for the case that

(

a1

p

)

=
(

a2

p

)

= 1.

More surprising is the case when neither a1 nor a2 are quadratic residues, so
(

a1

p

)

=
(

a2

p

)

= −1.

In this case, the above fact says that the product a1a2 is a quadratic residue since
(

a1a2

p

)

= (−1)(−1) = 1.

Here’s a way to see this. Let g be a primitive root of p. Write a1 ≡ gk1 (mod p) and a2 ≡ gk2

(mod p). Since a1 and a2 are not quadratic residues, it must be the case that k1 and k2 are both
odd; otherwise gk1/2 would be a square root of a1, or gk2/2 would be a square root of a2. But then
k1 + k2 is even since the sum of any two odd numbers is always even. Hence, g(k1+k2)/2 is a square
root of a1a2 ≡ gk1+k2 (mod p), so a1a2 is a quadratic residue.

3 Jacobi Symbol

The Jacobi symbol extends the Legendre symbol to the case where the “denominator” is an arbitrary
odd positive number n with prime factorization

∏k
i=1 pi

ei .

3.1 Definition

We define
(

a

n

)

=
k
∏

i=1

(

a

pi

) ei

. (1)

(By convention, this product is 1 when k = 0, so
(

a
1

)

= 1.) The symbol on the right side of (1) is
the Legendre symbol, and the symbol on the left is the Jacobi symbol. Clearly, when n = p is an
odd prime, the Jacobi symbol and Legendre symbols agree, so the Jacobi symbol is a true extension
of our earlier notion.

What does the Jacobi symbol mean when n is not prime? If
(

a
n

)

= −1 then a is definitely not a
quadratic residue modulo n, but if

(

a
n

)

= 1, a might or might not be a quadratic residue. Consider
the important case of n = pq for p, q distinct odd primes. Then

(

a

n

)

=
(

a

p

) (

a

q

)
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so there are two possibilities for
(

a
n

)

= 1: either
(

a
p

)

=
(

a
q

)

= +1 or
(

a
p

)

=
(

a
q

)

= −1. In
the first case, a is a quadratic residue modulo both p and q, so a is a quadratic residue modulo n. In
the second case, a is not a quadratic residue modulo either p or q, and it is not a quadratic residue
modulo n, either. Such numbers a are sometimes called “pseudo-squares” since they have Jacobi
symbol 1 but are not quadratic residues.

3.2 Identities

The Jacobi symbol is easily computed using Equation 1 and Theorem 1 if the factorization of n is
known. Similarly, gcd(u, v) is easily computed if the factorizations of u and v are known. The
Euclidean algorithm allows us to compute gcd(u, v) efficiently even without knowing the factors of
n. A similar algorithm allows

(

a
n

)

to be computed efficiently without knowing the factorization of
a or n.

The algorithm is based on identities satisfied by the Jacobi symbol:

1.
(

0
1

)

= 1;
(

0
n

)

= 0 for n 6= 1;

2.
(

2
n

)

= 1 if n ≡ ±1 (mod 8);
(

2
n

)

= −1 if n ≡ ±3 (mod 8);

3.
(a1
n

)

=
(a2
n

)

if a1 ≡ a2 (mod n);

4.
(

2a
n

)

=
(

2
n

)

(

a
n

)

;

5.
(

a
n

)

= −
(

n
a

)

if a ≡ n ≡ 3 (mod 4).

6.
(

a
n

)

=
(

n
a

)

if a ≡ 1 (mod 4) or (a ≡ 3 (mod 4) and n ≡ 1 (mod 4));

There are many ways to turn these identities into an algorithm. Below is a straightforward
recursive approach. Slightly more efficient iterative implementations are also possible.

int jacobi(int a, int n)
/* Precondition: a, n >= 0; n is odd */
{
if (a == 0) /* identity 1 */
return (n==1) ? 1 : 0;

if (a == 2) { /* identity 2 */
switch (n%8) {
case 1:
case 7:
return 1;

case 3:
case 5:
return -1;

}
}
if ( a >= n ) /* identity 3 */
return jacobi(a%n, n);

if (a%2 == 0) /* identity 4 */
return jacobi(2,n)*jacobi(a/2, n);

/* a is odd */ /* identities 5 and 6 */
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return (a%4 == 3 && n%4 == 3) ? -jacobi(n,a) : jacobi(n,a);
}

4 Strassen-Solovay Test of Compositeness

Recall that a test of compositeness for n is a set of predicates {τa(n)}a∈Z∗n such that if τ(n) succeeds
(is true), then n is composite. The Strassen-Solovay Test is the set of predicates {νa(n)}a∈Z∗n , where

νa(n) = true iff
(

a

n

)

6≡ a(n−1)/2 (mod n).

If n is prime, the test always fails by Theorem 1. Equivalently, if some νa(n) succeeds, then n must
be composite. Hence, the test is a valid- test of compositeness.

Let b = a(n−1)/2. There are two possible reasons why the test might succeed. One possibility
is that b2 ≡ an−1 6≡ 1 (mod n) in which case b 6≡ ±1 (mod n). This is just the Fermat test ζa(n)
from section 10.1 of lecture notes week 5. A second possibility is that an−1 ≡ 1 (mod n) but
nevertheless, b 6≡

(

a
n

)

(mod n). In this case, b is a square root of 1 (mod n), but it might have
the opposite sign from

(

a
n

)

, or it might not even be±1 since 1 has additional square roots when n is
composite. We claim without proof that for some constant c > 0 and all composite numbers n, the
probability that νa(n) succeeds for a randomly-chosen a ∈ Z∗n is at least c. I believe that c ≥ 1/4,
but this fact must be checked.

5 Miller-Rabin Test of Compositeness

The Miller-Rabin Test is more complicated to describe than the Solovay-Strassen Test, but the
probability of error (that is, the probability that it fails when n is composite) seems to be lower than
for Solovay-Strassen, so that the same degree of confidence can be achieved using fewer iterations
of the test. This makes it faster when incorporated into a primality-testing algorithm. It is also
closely related to the algorithm presented in lecture notes week 6, section 1.3 for factoring an RSA
modulus given the encryption and decryption keys.

5.1 The test

The test µa(n) is based on computing a sequence b0, b1, . . . , bk of integers in Z∗n. If n is prime, this
sequence ends in 1, and the last non-1 element, if any, is n − 1 (≡ −1 (mod n)). If the observed
sequence is not of this form, then n is composite, and the Miller-Rabin Test succeeds. Otherwise,
the test fails.

The sequence is computed as follows:

1. Write n− 1 = 2km, where m is an odd positive integer. Computationally, k is the number of
0’s at the right (low-order) end of the binary expansion of n, and m is the number that results
from n when the k low-order 0’s are removed.

2. Let b0 = am mod n.

3. For i = 1, 2, . . . , k, let bi = (bi−1)2 mod n.

An easy inductive proof shows that bi = a2im mod n for all i, 0 ≤ i ≤ k. In particular, bk ≡
a2km = an−1 (mod n).
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5.2 Validity

To see that the test is valid, we must show that µa(p) fails for all a ∈ Z∗p when p is prime. By Euler’s
theorem2, ap−1 ≡ 1 (mod p), so we see that bk = 1. Since 1 has only two square roots, 1 and −1,
modulo p, and bi−1 is a square root of bi modulo p, the last non-1 element in the sequence (if any)
must be −1 mod p. This is exactly the condition for which the Miller-Rabin test fails. Hence, it
fails whenever n is prime, so if it succeeds, n is indeed composite.

5.3 Accuracy

How likely is it to succeed when n is composite? It succeeds whenever an−1 6≡ 1 (mod n), so it
succeeds whenever the Fermat test ζa(n) would succeed. (See lecture notes week 5, section 10.1.)
But even when an−1 ≡ 1 (mod n) and the Fermat test fails, the Miller-Rabin test will succeed if
the last non-1 element in the sequence of b’s is one of the square roots of 1 other than ±1. It can be
proved that µa(n) succeeds for at least 3/4 of the possible values of a. Empirically, the test almost
always succeeds when n is composite, and one has to work to find a such that µa(n) fails.

5.4 Example

For example, take n = 561 = 3 ·11 ·17. This number is interesting because it is the first Carmichael
number. A Carmichael number is an odd composite number n that satisfies an−1 ≡ 1 (mod n)
for all a ∈ Z∗n. (See http://mathworld.wolfram.com/CarmichaelNumber.html.)
These are the numbers that I have been calling “pseudoprimes”. Let’s go through the steps of
computing µ37(561).

We begin by finding m and k. 561 in binary is 1000110001 (a palindrome!). Then n − 1 =
560 = (1000110000)2, so k = 4 and m = (100011)2 = 35. We compute b0 = am = 3735 mod
561 = 265 with the help of the computer. We now compute the sequence of b’s, also with the help
of the computer. The results are shown in the table below:

i bi
0 265
1 100
2 463
3 67
4 1

This sequence ends in 1, but the last non-1 element b3 6≡ −1 (mod 561), so the test µ37(561)
succeeds. In fact, the test succeeds for every a ∈ Z∗561 except for a = 1, 103, 256, 460, 511. For
each of those values, b0 = am ≡ 1 (mod 561).

5.5 Optimization

In practice, one only wants to compute as many of the b’s as necessary to determine whether or not
the test succeeds. In particular, one can stop after computing bi if bi ≡ ±1 (mod n). If bi ≡ −1
(mod n) and i < k, the test fails. If bi ≡ 1 (mod n) and i ≥ 1, the test succeeds. This is because
we know in this case that bi−1 6≡ −1 (mod n), for if it were, the algorithm would have stopped
after computing bi−1.

2This is also called Fermat’s little theorem.

http://mathworld.wolfram.com/CarmichaelNumber.html
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