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1 Feige-Fiat-Shamir Signatures

A signature scheme has a lot in common with the “non-interactive interactive” proofs introduced in
lecture notes week 10. In both cases, there is only a one-way communication from Alice to Bob.
Alice signs a message and sends it to Bob. Bob then verifies it without further interaction with
Alice. If Bob hands the message to Carol, then Carol can also verify that it was signed by Alice.

Not surprisingly, the “non-interactive interactive proof” ideas can be used to turn the Feige-Fiat-
Shamir authentication protocol of lecture notes week 10 into a signature scheme. The signature
scheme we present here is based on a slightly simplified version of the aforementioned protocol in
which all of the vi’s in the public key are quadratic residues, and n is not required to be a Blum
integer, only a product of two distinct odd primes. The public verification key is (n, v1, . . . , vk),
and the private signing key is (n, s1, . . . , sk), where vj = s−2

j mod n (1 ≤ j ≤ k).
To sign a message m, Alice simulates t rounds of the protocol in parallel. She first chooses

random r1, . . . , rt ∈ Zn − {0} and computes

xi = r2
i mod n (1 ≤ i ≤ t).

Next she computes u = H(mx1 · · ·xt), where H is a suitable cryptographic hash function. She
chooses b1,1, . . . , bt,k according to the first tk bits of u, that is,

bi,j = u(i−1)∗k+j (1 ≤ i ≤ t, 1 ≤ j ≤ k).

Finally, she computes
yi = rs

bi,1
1 · · · sbi,kk mod n (1 ≤ i ≤ t).

The signature is
s = (b1,1, . . . , bt,k, y1, . . . , yt).

To verify the signed message (m, s), Bob computes

zi = y2
i v
bi,1
1 · · · vbi,kk mod n (1 ≤ i ≤ t).

Bob checks that each zi 6= 0 and that b1,1, . . . , bt,k are equal to the first tk bits of H(mz1 · · · zt).
When both Alice and Bob are honest, it is easily verified that zi = xi (1 ≤ i ≤ t). In that case,

Bob’s checks all succeed since xi 6= 0 and H(mz1 · · · zt) = H(mx1 · · ·xt).
To forge Alice’s signature, an impostor must find bi,j’s and yi’s that satisfy the equation

b1,1 . . . bt,k � H(m(y2
1v
b1,1
1 · · · vb1,kk mod n) . . . (y2

t v
bt,1
1 · · · vbt,kk mod n)).

where “�” means string prefix. It is not obvious how to solve such an equation without knowing a
square root of each of the v−1

i ’s and following essentially Alice’s procedure.
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2 Secret Splitting

2.1 Simple two-part secret splitting

There are many situations in which one wants to grant access to a resource only if a sufficiently
large group of agents cooperate. For example, a store safe might require both the manager’s key
and the armored car driver’s key in order to be opened. This protects the store against a dishonest
manager or armored car driver, and it also prevents an armed robber from coercing the manager into
opening the safe. A similar 2-key system is used for safe deposit boxes in banks.

We might like to achieve the same properties for cryptographic keys or other secrets. For exam-
ple, if k is the secret decryption key for a cryptosystem, one might wish to split k into two shares
k1 and k2. By themselves, neither k1 nor k2 reveals any information about k, but when suitably
combined, k can be recovered. A simple way to do this is to choose k1 uniformly at random and
then let k2 = k ⊕ k1. Both k1 and k2 are uniformly distributed over the key space and hence give
no information about k. However, combined with XOR, they reveal k, since k = k1 ⊕ k2.

Indeed, the one-time pad cryptosystem of lecture notes week 1 can be viewed as an instance of
secret splitting. Here, Alice’s secret is her message m. The two shares are the ciphertext c and the
key k. Neither by themselves gives any information about m, but together they reveal m = k ⊕ c.

2.2 Multiple shares

Secret splitting generalizes to more than two shares. Imagine a large company that restricts access to
important company secrets to only its five top executives, say the president, vice-president, treasurer,
CEO, and CIO. They don’t want any executive to be able to access the data alone since they are
concerned that an executive might be blackmailed into giving confidential data to a competitor.
On the other hand, they also don’t want to require that all five executives get together to access
their data, both because this would be cumbersome and also because they worry about the death or
incapacitation of any single individual. They decide as a compromise that any three of them should
be able to access the secret data, but not one or two of them operating alone.

A (τ, k) threshold secret splitting scheme splits a secret s into shares s1, . . . , sk. Any subset
of τ or more shares allows s to be recovered, but no subset of shares of size less than τ gives any
information about s.

Shamir’s scheme

Shamir proposed a threshold scheme based on polynomials. A polynomial of degree d is an expres-
sion

f(x) = a0 + a1x+ a2x
2 + . . .+ adx

d.

where ad 6= 0. The numbers a0, . . . , ad are called the coefficients of f . A polynomial can be
simultaneously regarded as a function and as an object determined by its vector of coefficients.

Interpolation is the process of finding a polynomial that goes through a given set of points.

Fact Let (x1, y1), . . . , (xk, yk) be points, where all of the xi’s are distinct. There is a unique
polynomial f(x) of degree at most k − 1 that passes through all k points, that is, for which
f(xi) = yi (1 ≤ 1 ≤ k).

f can be found using Lagrangian interpolation. This statement generalizes the familiar statement
from high school geometry that two points determine a line.
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Interpolation also works over finite fields, for example, Zp for prime p. That is, any k points
with distinct x coordinates determine a unique polynomial of degree at most k − 1 over Zp. Of
course, we must have k ≤ p since Zp has only p distinct coordinate values in all.

Here’s how Shamir’s (τ, k) secret splitting scheme works. Let Alice (also called the dealer)
have secret s. She constructs a polynomial of degree at most τ − 1 as follows: She sets a0 = s,
and she chooses a1, . . . , aτ−1 ∈ Zp at random. Share si is the point (xi, yi), where xi = i and
yi = f(i) (1 ≤ i ≤ k)1.

Theorem 1 s can be reconstructed from any set T of τ or more shares.

Proof: Suppose si1 , . . . , siτ are τ distinct shares in T . By interpolation, there is a unique polyno-
mial g(x) of degree d ≤ τ − 1 that passes through these shares. By construction of the shares, f(x)
also passes through these same shares; hence g = f as polynomials. In particular, g(0) = f(0) = s
is the secret.

Theorem 2 Any set T ′ of fewer than τ shares gives no information about s.

Proof: Let T ′ = {si1 , . . . , sir} be a set of r < τ shares. There are in general many polynomials of
degree≤ τ−1 that interpolate the points in T ′. In particular, for each s′ ∈ Zp, there is a polynomial
gs′ that interpolates the shares in T ′ ∪{(0, s′)}. Each of these polynomials passes through all of the
shares in T ′, so each is a plausible candidate for f . Moreover, gs′(0) = s′, so each s′ is a plausible
candidate for the secret s. One can show further that the number of polynomials that interpolate
T ′ ∪ {(0, s′)} is the same for each s′ ∈ Zp, so each possible candidate s′ is equally likely to be s.
Hence, the shares in T ′ give no information at all about s.

2.3 Extensions

Several variations on secret sharing have been studied. I mention two briefly but do not go into
details.

Verifiable secret sharing. A dealer has a secret s which she wishes to share with a number of
players. The dealer can of course always lie about the true value of her secret, but, as with bit
commitment, the players want assurance that their shares do in fact code a unique secret. That
is, whenever sufficiently many shares are assembled to reconstruct the secret, the same secret s is
recovered, no matter which shares are used. In Shamir’s (τ, k) threshold scheme, this will be true
only if all of the shares lie on a single polynomial of degree at most k − 1. However, if the dealer
is dishonest and gives bad shares to some of the players, the resulting shares might not lie on any
polynomial of degree k − 1 or smaller. The players have no way to discover this until later when
they try to reconstruct s.

In verifiable secret sharing, the sharing phase is an active protocol involving the dealer and all
of the players. At the end of this phase, either the dealer is exposed as being dishonest, or all of the
players end up with shares that are consistent with a single secret. Needless to say, protocols for
verifiable secret sharing are quite complicated.

1f(i) is the result of evaluating the polynomial f at the value x = i. Here we assume all arithmetic is over the field
Zp, so we omit explicit mention of mod p.
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Fault tolerance. Even if the dealer is assumed to be honest, there is still the problem of actively
dishonest players. With Shamir’s scheme, a share that just disappears does not prevent the secret
from being reconstructed, as long as enough valid shares remain. But if a player lies about his share
and presents a corrupted share, then that share might be used by the other players in reconstructing
an incorrect value for the secret. A fault-tolerant secret sharing scheme should allow the secret to
be correctly reconstructed, even in the face of a certain number of corrupted shares.

Of course, it may be desirable to have schemes that can tolerate dishonesty in both dealer and
a certain number of players. The interested reader is encouraged to explore the extensive literature
on this subject.

3 Bit-Commitment Problem

Alice and Bob want to play a game over the internet. Alice says, “I’m thinking of a bit. If you guess
my bit correctly, I’ll give you $10. If you guess wrong, you give me $10.” Bob says, “Ok, I guess
zero.” Alice replies, “Sorry, you lose. I was thinking of one.”

While this game may seem fair on the surface, there is nothing to prevent Alice from changing
her mind after Bob makes his guess. Even if Alice and Bob play the game face to face, they still
must do something to commit Alice to her bit before Bob makes his guess. For example, Alice
might be required to write her bit down on a piece of paper and seal it in an envelope. After Bob
makes his guess, he opens the envelope and knows whether he has won or lost. The act of writing
down the bit commits Alice to that bit, even though Bob doesn’t learn its value until later.

The bit-commitment problem is to implement an electronic form of sealed envelope called a
commitment or blob or cryptographic envelope. Intuitively, a blob has two properties: (1) It is not
possible to see the bit inside the blob without opening it. (2) It is not possible to change the bit
inside the blob, that is, the blob cannot be opened in two different ways to reveal two different bits.

A blob is produced by a protocol commit(b) between Alice and Bob. We assume that b is
initially private to Alice. At the end of the commit protocol, Bob has a blob c containing Alice’s
bit b, but he should have no information about b’s value. Later, Alice and Bob can run a protocol
open(c) to reveal the bit contained in c.

Alice and Bob do not trust each other, so each wants protection from cheating by the other.
Alice wants to be sure that Bob cannot learn b after running commit(b), even if he misbehaves
during the protocol. Bob wants to be sure that any successful run of open(c) reveals the same bit
b′, so no matter what Alice does. Note that we do not require that Alice tell the truth about her
private bit b. A dishonest Alice can always pretend her bit was b′ 6= b when producing c. But if she
does, c can only be opened to b′, not to b.

These ideas should become clearer in the protocols below.

3.1 Commitment using symmetric cryptography

A naı̈ve way to use a symmetric cryptosystem for bit commitment is for Alice to commit b by
encrypting it with a private key k to get a blob c = Ek(b). She later opens it using the decryption
function Dk(c). Unfortunately, Alice can easily cheat if she can find a “colliding triple” (c, k0, k1)
with the properties that Dk0(c) = 0 and Dk0(c) = 1. She just “commits” by sending c to Bob.
Later, she can choose whether to open it to 0 or to 1 by sending Bob k0 or k1. This isn’t just a
hypothetical problem. Suppose Alice uses the most secure cryptosystem of all, a one-time pad, so
Dk(c) = c⊕ k. Then she can easily find a colliding triple by choosing k0 = c and k1 = c⊕ 1.
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The protocol of Figure 1 tries to make it harder for Alice to cheat by making it possible for Bob
to detect most bad keys.

Alice Bob

To commit(b):

1. r←−. Choose random string r.
2. Choose random key k.

Compute c = Ek(r · b). c−→ c is commitment.

To open(c):

3. Send k. k−→ Let r′ · b′ = Dk(c).
Check r′ = r.
b′ is revealed bit.

Figure 1: Bit commitment using cryptosystem.

For many cryptosystems (e.g., DES), this protocol does indeed prevent Alice from cheating, for
she will have difficulty finding any two keys k0 and k1 such that Ek0(r · 0) = Ek1(r · 1). However,
for the one-time pad cryptosystem, she can cheat as before: She just takes c to be random and lets
k0 = c⊕ (r · 0) and k1 = c⊕ (r · 1). Then Dkb(c) = r · b for b ∈ {0, 1}, so the revealed bit is 0 or
1 depending on whether Alice sends k0 or k1 in step 3.

We see that not all secure cryptosystems have the properties we need in order to make the
protocol of Figure 1 secure. We need a property analogous to the strong collision-free property for
hash functions.

3.2 Commitment using hash functions

The analogy between bit commitment and hash functions described above suggests a bit-
commitment scheme based on hash functions, as shown in Figure 2.

Alice Bob

To commit(b):

1. r1←− Choose random string r1.
2. Choose random string r2.

Compute c = H(r1r2b). c−→ c is commitment.

To open(c):
3. Send r2. r2−→ Find b′ ∈ {0, 1} such that c = H(r1r2b

′).
If no such b′, then fail.
Otherwise, b′ is revealed bit.

Figure 2: Bit commitment using hash function.

The purpose of r2 is to protect Alice’s secret bit b. To find b before Alice opens the commitment,
Bob would have to find r′2 and b′ such that H(r1r

′
2b
′) = c. This is akin to the problem of inverting

H and is likely to be hard, although the one-way property for H is not strong enough to imply this.
On the one hand, if Bob succeeds in finding such r′2 and b′, he has indeed inverted H , but he does
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so only with the help of r1—information that is not generally available when attempting to invert
H .

The purpose of r1 is to strengthen the protection that Bob gets from the hash properties of H .
Even without r1, the strong collision-free property of H would imply that Alice cannot find c, r2,
and r′2 such that H(r20) = c = H(r′21). But by using r1, Alice would have to find a new colliding
pair for each run of the protocol. This protects Bob by preventing Alice from exploiting a few
colliding pairs for H that she might happen to discover.

3.3 Commitment using pseudorandom sequence generators

A pseudorandom sequence generator (PRSG) maps a “short” random seed to a “long” pseudoran-
dom bit string. For a PRSG to be cryptographically strong, it must be difficult to correctly predict
any generated bit, even knowing all of the other bits of the output sequence. In particular, it must
also be difficult to find the seed given the output sequence, since if one knows the seed, then the
whole sequence can be generated. Thus, a PRSG is a one-way function and more. While a hash
function might generate hash values of the form yy and still be strongly collision-free, such a func-
tion could not be a PRSG since it would be possible to predict the second half of the output knowing
the first half.

I am being intentionally vague at this stage about what “short” and “long” mean, but intuitively,
“short” is a length like we use for cryptographic keys—long enough to prevent brute-force attacks,
but generally much shorter than the data we want to deal with. Think of “short”=128 or =256 and
you’ll be in the right ballpark. By “long”, we mean much larger sizes, perhaps thousands or even
millions of bits. In practice, we usually thing of the output length as being variable, so that we can
request as many output bits from the generator as we like and it will deliver them. Also, in practice,
the bits are generally delivered a block at a time rather than all at once, so we don’t even need to
announce in advance how many bits we want but can go back as needed to get more.

There are many ways to use a PRSGG for bit commitment. One such way is shown in Figure 3.
Here, ρ is a security parameter that controls the probability that a cheating Alice can fool Bob. We
let Gρ(s) denote the first ρ bits of G(s).

Alice Bob

To commit(b):

1. r←− Choose random string r ∈ {0, 1}ρ.
2. Choose random seed s.

Let y = Gρ(s).
If b = 0 let c = y.
If b = 1 let c = y ⊕ r. c−→ c is commitment.

To open(c):
3. Send s. s−→ Let y = Gρ(s).

If c = y then reveal 0.
If c = y ⊕ r then reveal 1.
Otherwise, fail.

Figure 3: Bit commitment using PRSG.

AssumingG is cryptographically strong, then c will look random to Bob, regardless of the value
of b, so he will be unable to get any information about b.
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The purpose of r is to protect Bob against a cheating Alice. Alice can cheat if she can find a
triple (c, s0, s1) such that s0 opens c to reveal 0 and s1 opens c to reveal 1. Such a triple must satisfy
the following pair of equations:

c = Gρ(s0)
c = Gρ(s1)⊕ r.

}

(1)

It is sufficient for her to solve the equation

r = Gρ(s0)⊕Gρ(s1) (2)

for s0 and s1 and then choose c = Gρ(s0).
One might ask why Bob needs to choose r? Why can’t Alice choose r, or why can’t r be fixed to

some constant? If Alice chooses r, then she can easily solve (2) and cheat. If r is fixed to a constant,
then if Alice ever finds a triple (c, s0, s1) satisfying (1), she can fool Bob every time. While finding
such a pair would be difficult if Gρ were a truly random function, any specific PRSG might have
special properties, at least for a few seeds, that would make this possible. For example, suppose
r = 1ρ and Gρ(¬s0) = ¬Gρ(s0) for some s0. Then (2) could be solved by taking s1 = ¬s0. By
having Bob choose r at random, r will be different each time (with very high probability), and a
successful cheating Alice would be forced to solve (1) in general, not just for one special case.

4 Bit-Commitment Schemes

The three bit-commitment protocols of the previous section all have the same form. We abstract
from these protocols a cryptographic primitive, called a bit-commitment scheme, which consists of
a pair of key spaces KA and KB, a blob space B, a commitment function

enclose : KA ×KB × {0, 1} → B,

and an opening function
reveal : KA ×KB × B → {0, 1, φ},

where φ means “failure”. We say that a blob c ∈ B contains b ∈ {0, 1} if reveal(kA, kB, c) = b
for some kA ∈ KA and kB ∈ KB .

These functions have three properties:

1. ∀kA ∈ KA,∀kB ∈ KB,∀b ∈ {0, 1}, reveal(kA, kB, enclose(kA, kB, b)) = b;

2. ∀kB ∈ KB,∀c ∈ B,∃b ∈ {0, 1},∀kA ∈ KA, reveal(kA, kB, c) ∈ {b, φ}.

3. No feasible probabilistic algorithm that attempts to distinguish blobs containing 0 from those
containing 1, given kB and c, is correct with probability significantly greater than 1/2.

The intention is that kA is chosen by Alice and kB by Bob. Intuitively, these conditions say:

1. Any bit b can be committed using any key pair kA, kB , and the same key pair will open the
blob to reveal b.

2. For each kB , all kA that successfully open c reveal the same bit.

3. Without knowing kA, the blob does not reveal any significant amount of information about
the bit it contains, even when kB is known.
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A bit-commitment scheme looks a lot like a symmetric cryptosystem, with enclose(kA, kB, b)
playing the role of the encryption function and reveal(kA, kB, c) the role of the decryption func-
tion. However, they differ both in their properties and in the environments in which they are used.
Conventional cryptosystems do not require condition 2, nor do they necessarily satisfy it. In a con-
ventional cryptosystem, it is assumed that Alice and Bob trust each other and both share a secret
key k. The cryptosystem is designed to protect Alice’s secret message from a passive eavesdropper
Eve. In a bit-commitment scheme, Alice and Bob cooperate in the protocol but do not trust each
other to choose the key. Rather, the key is split into two pieces, kA and kB , with each participant
controlling one piece.

A bit-commitment scheme can be turned into a bit-commitment protocol by plugging it into the
generic protocol given in Figure 4.

Alice Bob

To commit(b):

1. kB←− Choose random kB ∈ KB .
2. Choose random kA ∈ KA.

Compute c = enclose(kA, kB, b). c−→ c is commitment.

To open(c):

3. Send kA. kA−→ Compute b = reveal(kA, kB, c).
If b = φ, then fail.
If b 6= φ, then b is revealed bit.

Figure 4: A generic bit commitment protocol.

Each of the protocols of section 4 can be regarded as in instance of the generic protocol. For
example, we get the protocol of Figure 1 by taking

enclose(kA, kB, b) = EkA(kB · b),

and

reveal(kA, kB, c) =

{

b if kB · b = DkA(c)
φ otherwise.
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