
Authentication in real world:
Kerberos, SSH and SSL

Zheng Ma
Apr 19, 2005

Where are we?

After learning all the foundation
of modern cryptography, we are
ready to see some real world
applications based on them.

What happened when you use your
Yale netid and password? How does
our system authenticate yourself

Internet is a tough environment,
security protocols need to deal with
many different scenarios of attacks.

Think about Authentication

Authentication provides a means to identify a client that requires
access to some system.

Network services, such as telnet, pop3, and nfs, need to
authenticate individual users, by using their passwords, for
example. We use our netid/password to access sis, email,
pantheon and etc everyday.

Note that firewalls can not replace authentication
In general, good users may be on bad hosts, and bad users may

be on good hosts.
Thus, blocking traffic based on IP addresses and port

numbers is not sufficient
The mechanism for authentication is typically undertaken through
the exchange of keys or certificates between the client and the
server. What should we do?

Use of Password over a Network

Of course, passwords should not be sent in clear text
What about sending encrypted passwords? No, they
should not be sent over the network either. This is to
avoid replay attacks
Next slide shows a typical method of defending against
password replay attacks. The method uses no encrypted
password

Use of Challenges to Defend Against Password Replay

Client Server

Password Offline
Operation

Client’s Name

Challenge
(time-dependent
value, a randomly
select value, or both)

• Enter password
• Compute a hash value

using challenge and
password

• Send hash value Verify received
hash value

The “O(N2) Password Management Problem”

Each of the N servers authenticates each of the N users
Every server keeps track of the password of every user
Thus a total of O(N2) pieces of information items to manage

Kerberos’ Objective: Provide an O(N) Solution

Use a single authentication server that has trusted
relationship with N clients and N servers. Thus, only O(N)
keys to worry about
The authentication server will generate session keys
(aka “tickets”) for each client-server session

What is Kerberos?

Part of project Athena (MIT).
Trusted 3rd party authentication scheme. Key Distribution Center
(KDC)
Assumes that hosts are not trustworthy.
Requires that each client (each request for service) prove it’s
identity.
Does not require user to enter password every time a service is
requested!

Kerberos: etymology

Originally, the 3 heads represented the 3 A’s
(Authentication, Authorization, and Accounting)

We’ll focus on authentication

Fluffy, the 3 headed dog, from
“Harry Potter and the Sorcerers Stone”The 3-headed dog that

guards the entrance to
Hades

How Kerberos Tickets Work (Daily Experience)

A user first gets a ticket from the Kerberos authentication server. A ticket
is like a driver's license issued by the DMV

When attempting to make use of a network service, the user presents the
ticket to the service, along with the user’s “authenticator”. The service
then examines the ticket and the authenticator to verify the identity of the
user. If all checks out, then the user is accepted

This is like a customer presenting his driver’s license to a supermarket
manager when trying to cash a personal check. In this case, the
customer’s “authenticator” is the customer’s face with which the
supermarket manager can match the photo on the driver’s license

Note that a ticket can be used many times until it expires

Kerberos Authentication

Kerberos
Authentication

Server (AS)

Client (C)

1
2

3 Application
Server (S)

Key

Registration

Key Registration

1. Req for application server ticket
2. Ticket for application server
3. Req for service

Kerberos Terminology and Abbreviations

c client id
s server id
addr client’s IP address
life lifetime of ticket
TGS ticket granting server
Kx x’s secret key (x being a client or server)
Kx,y session key for x and y
{abc}Kx abc encrypted in x’s key
Tx,y x’s ticket to use y (used many times)
Ax authenticator for x, containing x’s name (e.g.,
zheng.ma@yale.edu, current time (to defeat replay) and checksum

mailto:zheng.ma@yale.edu

Kerberos Authentication (Detail)

In essence, the Kerberos system is
for the purpose of producing a
“session key”, i.e., “ticket” that C
and S can use

Kerberos
Authentication

Server (AS)

1. Req for S ticket
2. S ticket

3. Req for
Service Application

Server (S)Client (C)

Tc,s contains session key Kc,s
In step 2, user enters password to decrypt the

received message
If S can decode {Ac}Kc,s, then user must have

entered the correct password!

1. c, s
2. {Kc,s, {Tc,s}Ks}Kc

3. {Ac}Kc,s, {Tc s}Ks

Kerberos Authentication w/ TGS

KeyKerberos
Authentication

Server (AS) Ticket Granting Server
(TGS)

Client (C)

1
2 3 4

5Key

Registration

Key

Application
Server (S)

1. Req for TGS ticket
2. Ticket for TGS
3. Req for application server

ticket

4. Ticket for application server
5. Req for service

Kerberos Authentication w/ TGS (Detail)

Kerberos
Authentication

Server (AS) Ticket Granting Server
(TGS)

Application
Server (S)

Client (C)

1
2 3 4

5
1. c, tgs
2. {Kc, tgs, {Tc, tgs}Ktgs}Kc

3. s, {Ac}Kc, tgs, {Tc, tgs}Ktgs

4. {Kc,s, {Tc,s}Ks}Kc,tgs

5. {Ac}Kc,s, {Tc s}Ks

In step 4 client uses stored Kc,tgs rather than
user entering password. This is convenient.
But system now needs to believe that client
can be trusted for the period when Kc,tgs is
valid

Kerberos’ Stateless Model

TGS does not send {Kc,s}Ks to S directly. Instead, TGS sends
{Tc,s}Ks, with Tc,s containing Kc,s, to C and let C forward it to S

Otherwise, S would need to keep state, i.e., keep received Kc,s
around, and this would complicate implementation

In general, servers do not talk to each other directly. Clients
initialize transactions and complete them

This stateless model is simple and elegant

Scaling Kerberos

To scale, divide the network into realms each having its own AS
and its own TGS

To allow for cross-realm authentication, i.e., to allow users in one
realm to access services in another, the user's realm may register
a remote TGS (RTGS) in the service's realm

To reduce cross-realm registration, use a hierarchy of realms

Kerberos Authorization and Accounting

In Kerberos, authorization and accounting are supported by having
AS inserting some predefined information, e.g., access control list,
in the ticket

It is encrypted in the ticket, so it is tamper-proof
The information are left for the server to interpret

Advantages of Kerberos

Passwords aren’t exposed to eavesdropping
Password is only typed to the local workstation

It never travels over the network
It is never transmitted to a remote server

Password guessing more difficult
Single Sign-on

More convenient: only one password, entered once
Users may be less likely to store passwords

Stolen tickets hard to reuse
Need authenticator as well, which can’t be reused

Much easier to effectively secure a small set of limited access machines (the
AS’s)
Easier to recover from host compromises
Centralized user account administration

Kerberos caveats

Kerberos server can impersonate anyone
AS is a single point of failure

Can have replicated AS’s
AS could be a performance bottleneck

Everyone needs to communicate with it frequently
Not a practical concern these days
Having multiple AS’s alleviates the problem

If local workstation is compromised, user’s password could be stolen by a
trojan horse

Only use a desktop machine or laptop that you trust
Use hardware token pre-authentication

Kerberos vulnerable to password guessing attacks
Choose good passwords!
Use hardware pre-authentication

Hardware tokens, Smart cards etc

Summary of Kerberos

Kerberos provides an authentication server (AS) that issues
“tickets” or “session keys” to clients for various services

The O(N2) password management problem is alleviated
In addition, by using the TGS, users no longer need to type in
passwords all the time

AS and TGS need to be trusted
For large systems, should PKI (Public Key Infrastructure) be used
instead?
For small systems, do we need Kerberos? SSH may be just fine.

Ssshhhhh....

Be very quiet so Eve can’t hear anything
Encrypt the communication between the terminal and the
server
How?

Simplified SSH Protocol

Terminal

Login: zm25
Password: ***********

matrix.cs.yale.edulogin sends
EKUmatrix<“zm25”, password>

Eve
Can’t decrypt without KRmatrix

Actual SSH Protocol

Client Server

KUS -
public host key

KUt – s
public key,
changes every
hour

r – 256-bit
random number
generated by
client

tim
e

KUS, KUt
Compares

to stored KUS

2

EKUS [EKUt [r]]
|| { IDEA | 3DES }3

All traffic encrypted using r and
selected algorithm. Can do

regular login (or something more
complicated).

requests connection1 server’s

erver’s

Comparing to stored KUS

It better be stored securely
PuTTY stores it in windows registry
(HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\Ssh
HostKeys)

Accept and Save

SecureCRT

Default choice!

“Usability in normal environments has been a major
design concern from the beginning, and SSH
attempts to make things as easy for normal users as
possible while still maintaining a sufficient level of
security.”

Tatu Ylonen, SSH – Secure Login Connections
over the Internet,

June 1996.

ssh.com’s SSH

ssh Error

ISO/OSI Model SSL: Security at Transport Layer

Application LayerApplication Layer

Presentation LayerPresentation Layer

Session LayerSession Layer

Transport LayerTransport Layer

Network LayerNetwork Layer

Data Link LayerData Link Layer

Physical LayerPhysical Layer

Application LayerApplication Layer

Presentation LayerPresentation Layer

Session LayerSession Layer

Transport LayerTransport Layer

Network LayerNetwork Layer

Data Link LayerData Link Layer

Physical LayerPhysical Layer

Network LayerNetwork Layer

Data Link LayerData Link Layer

Physical LayerPhysical Layer

Peer-to-peer

Flow of bits

Security at the Transport Layer
Secure Socket Layer (SSL)

Developed by Netscape to provide security in WWW browsers and
servers
SSL is the basis for the Internet standard protocol – Transport Layer
Security (TLS) protocol (compatible with SSLv3)
Key idea: Connections and Sessions

A SSL session is an association between two peers
An SSL connection is the set of mechanisms used to transport data in an
SSL session

Secure Socket Layer (SSL)

Each party keeps session information
Session identifier (unique)
The peer’s X.503(v3) certificate
Compression method used to reduce volume of data
Cipher specification (parameters for cipher and MAC)
Master secret of 48 bits

Connection information
Random data for the server & client
Server and client keys (used for encryption)
Server and client MAC key
Initialization vector for the cipher, if needed
Server and client sequence numbers

Provides a set of supported cryptographic mechanisms that are setup during
negotiation (handshake protocol)

An example of key exchange using public/private keys

SSL (Secure Socket Layer) and TLS (Transport Layer Security) use public/private keys to
exchange a secret key used during a session
The SSL handshake consists of several steps, as follows:

Step 1: The client contacts the server and sends SSL version number, a random number X,
and some additional information

Step 2: The server sends the client the SSL version number, random number Y, and its
public key (packaged into a certificate)

Step 3: The client verifies that the server is who is says it is by examining the certificate
(more on this in a bit)

Step 4: The client creates a “premaster secret” using X, Y, and other information. It
encrypts the secret using the server’s public key.

Step 5: If the server has requested authentication, the client sends its own certificate and
the premaster secret to the server

Step 6: The server authenticates the client by examining the client’s certificate, uses its
private key to decrypt the premaster secret, then uses it to generate the master secret.
The client also generates the master secret.

Step 7: Both the client and the server use the master secret to generate the session secret
key

Steps 8 (9): The client (server) sends a message to the server (client) telling it that it will
use the secret key. It sends a second message encrypted with the secret key

Acknowledgements

Credits of some slides and images:

http://www.upenn.edu/computing/pennkey/docs/kerbpres/
200207Kerberos.htm
http://www.eecs.harvard.edu/cs143/
http://www.cs.virginia.edu/~evans/cs551/

http://www.upenn.edu/computing/pennkey/docs/kerbpres/200207Kerberos.htm
http://www.upenn.edu/computing/pennkey/docs/kerbpres/200207Kerberos.htm
http://www.eecs.harvard.edu/cs143/
http://www.cs.virginia.edu/~evans/cs551/

	Authentication in real world: Kerberos, SSH and SSL
	Where are we?
	Think about Authentication
	The “O(N2) Password Management Problem”
	What is Kerberos?
	Kerberos: etymology
	How Kerberos Tickets Work (Daily Experience)
	Kerberos Authentication
	Kerberos Terminology and Abbreviations
	Kerberos Authentication (Detail)
	Kerberos Authentication w/ TGS
	Kerberos Authentication w/ TGS (Detail)
	Kerberos’ Stateless Model
	Scaling Kerberos
	Kerberos Authorization and Accounting
	Advantages of Kerberos
	Kerberos caveats
	Summary of Kerberos
	Ssshhhhh....
	Simplified SSH Protocol
	Actual SSH Protocol
	Comparing to stored KUS
	Accept and Save
	ssh.com’s SSH
	ssh Error
	ISO/OSI Model SSL: Security at Transport Layer
	Security at the Transport Layer Secure Socket Layer (SSL)
	Secure Socket Layer (SSL)
	An example of key exchange using public/private keys
	Acknowledgements

