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Number Theory Summary
Integers Let Z denote the integers and Z+ the positive integers.

Division For a ∈ Z and n ∈ Z+, there exist unique integers q, r such that a = nq + r and
0 ≤ r < n. We denote the quotient q by ba/nc and the remainder r by a mod n. We say n
divides a (written n |a) if a mod n = 0. If n |a, n is called a divisor of a. If also 1 < n < |a|,
n is said to be a proper divisor of a.

Greatest common divisor The greatest common divisor (gcd) of integers a, b (written gcd(a, b) or
simply (a, b)) is the greatest integer d such that d |a and d | b. If gcd(a, b) = 1, then a and b
are said to be relatively prime.

Euclidean algorithm Computes gcd(a, b). Based on two facts: gcd(0, b) = b; gcd(a, b) =
gcd(b, a − qb) for any q ∈ Z. For rapid convergence, take q = ba/bc, in which case
a− qb = a mod b.

Congruence For a, b ∈ Z and n ∈ Z+, we write a ≡ b (mod n) iff n | (b − a). Note a ≡ b
(mod n) iff (a mod n) = (b mod n).

Modular arithmetic Fix n ∈ Z+. Let Zn = {0, 1, . . . , n − 1} and let Z∗
n = {a ∈ Zn |

gcd(a, n) = 1}. For integers a, b, define a⊕b = (a+b) mod n and a⊗b = ab mod n. ⊕ and
⊗ are associative and commutative, and ⊗ distributes over ⊕. Moreover, mod n distributes
over both + and ×, so for example, a + b × (c + d) mod n = (a mod n) + (b mod n) ×
((c mod n) + (d mod n)) = a⊕ b⊗ (c⊕ d). Zn is closed under ⊕ and ⊗, and Z∗

n is closed
under ⊗.

Primes and prime factorization A number p ≥ 2 is prime if it has no proper divisors. Any posi-
tive number n can be written uniquely (up to the order of the factors) as a product of primes.
Equivalently, there exist unique integers k, p1, . . . , pk, e1, . . . , ek such that n =

∏k
i=1 pi

ei ,
k ≥ 0, p1 < p2 < . . . < pk are primes, and each ei ≥ 1. The product

∏k
i=1 pi

ei is called
the prime factorization of n. A positive number n is composite if (

∑k
i=1 ei) ≥ 2 in its prime

factorization. By these definitions, n = 1 has prime factorization with k = 0, so 1 is neither
prime nor composite.

Linear congruences Let a, b ∈ Z, n ∈ Z+. Let d = gcd(a, n). If d |b, then there are d solutions x
in Zn to the congruence equation ax ≡ b (mod n). If d ∼| b, then ax ≡ b (mod n) has no
solution.

Extended Euclidean algorithm Finds one solution of ax ≡ b (mod n), or announces that there
are none. Call a triple (g, u, v) valid if g = au + nv. Algorithm generates valid triples
starting with (n, 0, 1) and (a, 1, 0). Goal is to find valid triple (g, u, v) such that g | b. If
found, then u(b/g) solves ax ≡ b (mod n). If none exists, then no solution. Given valid
(g, u, v), (g′, u′, v′), can generate new valid triple (g−qg′, u−qu′, v−qv′) for any q ∈ Z. For
rapid convergence, choose q = bg/g′c, and retain always last two triples. Note: Sequence of
generated g-values is exactly the same as the sequence of numbers generated by the Euclidean
algorithm.
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Inverses Let n ∈ Z+, a ∈ Z. There exists unique b ∈ Z such that ab ≡ 1 (mod n) iff gcd(a, n) =
1. Such a b, when it exists, is called an inverse of a modulo n. We write a−1 for the unique
inverse of a modulo n that is also in Zn. Can find a−1 mod n efficiently by using Extended
Euclidean algorithm to solve ax ≡ 1 (mod n).

Chinese remainder theorem Let n1, . . . , nk be pairwise relatively prime numbers in Z+, let
a1, . . . , ak be integers, and let n =

∏
i ni. There exists a unique x ∈ Zn such that x ≡ ai

(mod ni) for all 1 ≤ i ≤ k. To compute x, let Ni = n/ni and compute Mi = N−1
i mod ni,

1 <= i <= k. Then x = (
∑k

i=1 aiMiNi) mod n.

Euler function Let φ(n) = |Z∗
n|. One can show that φ(n) =

∏k
i=1(pi− 1)pi

ei−1, where
∏k

i=1 pi
ei

is the prime factorization of n. In particular, if p is prime, then φ(p) = p− 1, and if p, q are
distinct primes, then φ(pq) = (p− 1)(q − 1).

Euler’s theorem Let n ∈ Z+, a ∈ Z∗
n. Then aφ(n) ≡ 1 (mod n). As a consequence, if r ≡ s

(mod φ(n)) then ar ≡ as (mod n).

Order of an element Let n ∈ Z+, a ∈ Z∗
n. We define ord(a), the order of a modulo n, to be the

smallest number k ≥ 1 such that ak ≡ 1 (mod n). Fact: ord(a) |φ(n).

Primitive roots Let n ∈ Z+, a ∈ Z∗
n. a is a primitive root of n iff ord(a) = φ(n). For a primitive

root a, it follows that Z∗
n = {a mod n, a2 mod n, . . . , aφ(n) mod n}. If n has a primitive

root, then it has φ(φ(n)) primitive roots. Primitive roots exist for every prime p (and for some
other numbers as well). a is a primitive root of p iff a(p−1)/q 6≡ 1 (mod p) for every prime
divisor q of p− 1.

Discrete log Let p be a prime, a a primitive root of p, b ∈ Z∗
p such that b ≡ ak (mod p) for some

k, 0 ≤ k ≤ p− 2. We say k is the discrete logarithm of b to the base a.

Quadratic residues Let a ∈ Z, n ∈ Z+. a is a quadratic residue modulo n if there exists y such
that a ≡ y2 (mod n). a is sometimes called a square and y its square root.

Quadratic residues modulo a prime If p is an odd prime, then every quadratic residue in Z∗
p has

exactly two square roots in Z∗
p, and exactly half of the elements in Z∗

p are quadratic residues.
Let a ∈ Z∗

p be a quadratic residue. Then a(p−1)/2 ≡ (y2)(p−1)/2 ≡ yp−1 ≡ 1 (mod p),
where y a square root of a modulo p. Let g be a primitive root modulo p. If a ≡ gk

(mod p), then a is a quadratic residue modulo p iff k is even, in which case its two square
roots are gk/2 mod p and−gk/2 mod p. If p ≡ 3 (mod 4) and a ∈ Z∗

p is a quadratic residue
modulo p, then a(p+1)/4 is a square root of a, since (a(p+1)/4)2 ≡ aa(p−1)/2 ≡ a (mod p).

Quadratic residues modulo products of two primes If n = pq for p, q distinct odd primes, then
every quadratic residue in Z∗

n has exactly four square roots in Z∗
n, and exactly 1/4 of the

elements in Z∗
n are quadratic residues. An element a ∈ Z∗

n is a quadratic residue modulo n
iff it is a quadratic residue modulo p and modulo q. The four square roots of a can be found
from its two square roots modulo p and its two square roots modulo q using the Chinese
remainder theorem.

Legendre symbol Let a ≥ 0, p an odd prime.
(

a
p

)
= 1 if a is a quadratic residue modulo p, −1 if

a is a quadratic non-residue modulo p, and 0 if p |a. Fact:
(

a
p

)
= a(p−1)/2.
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Jacobi symbol Let a ≥ 0, n an odd positive number with prime factorization
∏k

i=1 pi
ei . We define(

a
n

)
=

∏k
i=1

(
a
pi

) ei
. (By convention, this product is 1 when k = 0, so

(
a
1

)
= 1.) The Jacobi

and Legendre symbols agree when n is an odd prime. If
(

a
n

)
= −1 then a is definitely not a

quadratic residue modulo n, but if
(

a
n

)
= 1, a might or might not be a quadratic residue.

Computing the Jacobi symbol
(

a
n

)
can be computed efficiently by a straightforward recursive

algorithm, based on the following identities:
(

0
1

)
= 1;

(
0
n

)
= 0 for n 6= 1;

(a1
n

)
=

(a2
n

)
if a1 ≡ a2 (mod n);

(
2
n

)
= 1 if n ≡ ±1 (mod 8);

(
2
n

)
= −1 if n ≡ ±3 (mod 8);(

2a
n

)
=

(
2
n

) (
a
n

)
;

(
a
n

)
=

(
n
a

)
if a ≡ 1 (mod 4) or n ≡ 1 (mod 4);

(
a
n

)
= −

(
n
a

)
if

a ≡ n ≡ 3 (mod 4).

Solovay-Strassen test for compositeness Let n ∈ Z+. If n is composite, then for roughly 1/2 of
the numbers a ∈ Z∗

n,
(

a
n

)
6≡ a(n−1)/2 (mod n). If n is prime, then for every a ∈ Z∗

n,(
a
n

)
≡ a(n−1)/2 (mod n).

Miller-Rabin test for compositeness Let n ∈ Z+ and write n−1 = 2km, where m is odd. Choose
1 ≤ a ≤ n − 1. Compute bi = am2i

mod n for i = 0, 1, . . . , k − 1. If n is composite, then
for roughly 3/4 of the possible values for a, b0 6= 1 and bi 6= −1 for 0 ≤ i ≤ k − 1. If n is
prime, then for every a, either b0 = 1 or bi = −1 for some i, 0 ≤ i ≤ k − 1.
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