YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Handout #4

Professor M. J. Fischer **Professor M. J. Fischer**

Number Theory Summary

Integers Let Z denote the integers and Z^+ the positive integers.

- **Division** For $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$, there exist unique integers q, r such that $a = nq + r$ and $0 \le r < n$. We denote the *quotient* q by $|a/n|$ and the *remainder* r by a mod n. We say n *divides* a (written $n|a$) if a mod $n = 0$. If $n|a, n$ is called a *divisor* of a. If also $1 < n < |a|$, n is said to be a *proper divisor* of a.
- **Greatest common divisor** The *greatest common divisor* (gcd) of integers a, b (written $gcd(a, b)$ or simply (a, b) is the greatest integer d such that $d | a$ and $d | b$. If $gcd(a, b) = 1$, then a and b are said to be *relatively prime*.
- **Euclidean algorithm** Computes $gcd(a, b)$. Based on two facts: $gcd(0, b) = b$; $gcd(a, b) =$ $gcd(b, a - qb)$ for any $q \in \mathbb{Z}$. For rapid convergence, take $q = |a/b|$, in which case $a - qb = a \mod b$.
- **Congruence** For $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$, we write $a \equiv b \pmod{n}$ iff $n \mid (b a)$. Note $a \equiv b$ \pmod{n} iff $(a \bmod n) = (b \bmod n)$.
- **Modular arithmetic** Fix $n \in \mathbb{Z}^+$. Let $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$ and let $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n \mid a \in \mathbb{Z}_n\}$ $gcd(a, n) = 1$. For integers a, b, define $a \oplus b = (a+b) \mod n$ and $a \otimes b = ab \mod n$. \oplus and \otimes are associative and commutative, and \otimes distributes over \oplus . Moreover, mod n distributes over both + and \times , so for example, $a + b \times (c + d) \mod n = (a \mod n) + (b \mod n) \times$ $((c \bmod n) + (d \bmod n)) = a \oplus b \otimes (c \oplus d)$. \mathbb{Z}_n is closed under \oplus and \otimes , and \mathbb{Z}_n^* is closed under ⊗.
- **Primes and prime factorization** A number $p \geq 2$ is *prime* if it has no proper divisors. Any positive number n can be written uniquely (up to the order of the factors) as a product of primes. Equivalently, there exist unique integers $k, p_1, \ldots, p_k, e_1, \ldots, e_k$ such that $n = \prod_{i=1}^k p_i^{e_i}$, $k \geq 0$, $p_1 < p_2 < \ldots < p_k$ are primes, and each $e_i \geq 1$. The product $\prod_{i=1}^k p_i^{e_i}$ is called the *prime factorization* of *n*. A positive number *n* is *composite* if $(\sum_{i=1}^{k} e_i) \ge 2$ in its prime factorization. By these definitions, $n = 1$ has prime factorization with $k = 0$, so 1 is neither prime nor composite.
- **Linear congruences** Let $a, b \in \mathbb{Z}$, $n \in \mathbb{Z}^+$. Let $d = \gcd(a, n)$. If $d \mid b$, then there are d solutions x in \mathbb{Z}_n to the congruence equation $ax \equiv b \pmod{n}$. If $d \nmid b$, then $ax \equiv b \pmod{n}$ has no solution.
- **Extended Euclidean algorithm** Finds one solution of $ax \equiv b \pmod{n}$, or announces that there are none. Call a triple (g, u, v) *valid* if $g = au + nv$. Algorithm generates valid triples starting with $(n, 0, 1)$ and $(a, 1, 0)$. Goal is to find valid triple (q, u, v) such that $q \mid b$. If found, then $u(b/g)$ solves $ax \equiv b \pmod{n}$. If none exists, then no solution. Given valid $(g, u, v), (g', u', v')$, can generate new valid triple $(g - qg', u - qu', v - qv')$ for any $q \in \mathbb{Z}$. For rapid convergence, choose $q = \lfloor g/g' \rfloor$, and retain always last two triples. Note: Sequence of generated g -values is exactly the same as the sequence of numbers generated by the Euclidean algorithm.
- **Inverses** Let $n \in \mathbb{Z}^+$, $a \in \mathbb{Z}$. There exists unique $b \in \mathbb{Z}$ such that $ab \equiv 1 \pmod{n}$ iff $\gcd(a, n) =$ 1. Such a b, when it exists, is called an *inverse* of a modulo n. We write a^{-1} for the unique inverse of a modulo n that is also in \mathbb{Z}_n . Can find a^{-1} mod n efficiently by using Extended Euclidean algorithm to solve $ax \equiv 1 \pmod{n}$.
- **Chinese remainder theorem** Let n_1, \ldots, n_k be pairwise relatively prime numbers in \mathbf{Z}^+ , let a_1, \ldots, a_k be integers, and let $n = \prod_i n_i$. There exists a unique $x \in Z_n$ such that $x \equiv a_i$ (mod n_i) for all $1 \le i \le k$. To compute x, let $N_i = n/n_i$ and compute $M_i = N_i^{-1} \mod n_i$, $1 \le i \le k$. Then $x = (\sum_{i=1}^{k} a_i M_i N_i) \text{ mod } n$.
- **Euler function** Let $\phi(n) = |\mathbf{Z}_n^*|$. One can show that $\phi(n) = \prod_{i=1}^k (p_i 1) p_i^{e_i 1}$, where $\prod_{i=1}^k p_i^{e_i}$ is the prime factorization of n. In particular, if p is prime, then $\phi(p) = p - 1$, and if p, q are distinct primes, then $\phi(pq) = (p-1)(q-1)$.
- **Euler's theorem** Let $n \in \mathbb{Z}^+$, $a \in \mathbb{Z}_n^*$. Then $a^{\phi(n)} \equiv 1 \pmod{n}$. As a consequence, if $r \equiv s$ $\pmod{\phi(n)}$ then $a^r \equiv a^s \pmod{n}$.
- **Order of an element** Let $n \in \mathbb{Z}^+$, $a \in \mathbb{Z}_n^*$. We define $\text{ord}(a)$, the *order* of a modulo n, to be the smallest number $k \ge 1$ such that $a^k \equiv 1 \pmod{n}$. Fact: $\text{ord}(a)|\phi(n)$.
- **Primitive roots** Let $n \in \mathbb{Z}^+$, $a \in \mathbb{Z}_n^*$. a is a *primitive root* of n iff $\text{ord}(a) = \phi(n)$. For a primitive root a, it follows that $\mathbf{Z}_n^* = \{a \bmod n, a^2 \bmod n, \ldots, a^{\phi(n)} \bmod n\}$. If n has a primitive root, then it has $\phi(\phi(n))$ primitive roots. Primitive roots exist for every prime p (and for some other numbers as well). *a* is a primitive root of p iff $a^{(p-1)/q} \not\equiv 1 \pmod{p}$ for every prime divisor q of $p-1$.
- **Discrete log** Let p be a prime, a a primitive root of p, $b \in \mathbb{Z}_p^*$ such that $b \equiv a^k \pmod{p}$ for some $k, 0 \le k \le p-2$. We say k is the *discrete logarithm* of b to the base a.
- **Quadratic residues** Let $a \in \mathbb{Z}$, $n \in \mathbb{Z}^+$. a is a *quadratic residue* modulo n if there exists y such that $a \equiv y^2 \pmod{n}$. *a* is sometimes called a *square* and *y* its *square root*.
- **Quadratic residues modulo a prime** If p is an odd prime, then every quadratic residue in \mathbb{Z}_p^* has exactly two square roots in \mathbf{Z}_p^* , and exactly half of the elements in \mathbf{Z}_p^* are quadratic residues. Let $a \in \mathbb{Z}_p^*$ be a quadratic residue. Then $a^{(p-1)/2} \equiv (y^2)^{(p-1)/2} \equiv y^{p-1} \equiv 1 \pmod{p}$, where y a square root of a modulo p. Let g be a primitive root modulo p. If $a \equiv g^k$ (mod p), then a is a quadratic residue modulo p iff k is even, in which case its two square roots are $g^{k/2} \bmod p$ and $-g^{k/2} \bmod p$. If $p \equiv 3 \pmod{4}$ and $a \in \mathbb{Z}_p^*$ is a quadratic residue modulo p, then $a^{(p+1)/4}$ is a square root of a, since $(a^{(p+1)/4})^2 \equiv aa^{(p-1)/2} \equiv a \pmod{p}$.
- **Quadratic residues modulo products of two primes** If $n = pq$ for p, q distinct odd primes, then every quadratic residue in \mathbf{Z}_n^* has exactly four square roots in \mathbf{Z}_n^* , and exactly 1/4 of the elements in \mathbf{Z}_n^* are quadratic residues. An element $a \in \mathbf{Z}_n^*$ is a quadratic residue modulo n iff it is a quadratic residue modulo p and modulo q. The four square roots of a can be found from its two square roots modulo p and its two square roots modulo q using the Chinese remainder theorem.
- **Legendre symbol** Let $a \ge 0$, p an odd prime. $\left(\frac{a}{b}\right)$ $\left(\frac{a}{p}\right) = 1$ if a is a quadratic residue modulo p, -1 if a is a quadratic non-residue modulo p, and 0 if $p | a$. Fact: $\left(\frac{a}{p}\right)$ $\frac{a}{p}$ = $a^{(p-1)/2}$.
- **Jacobi symbol** Let $a \geq 0$, n an odd positive number with prime factorization $\prod_{i=1}^{k} p_i^{e_i}$. We define $\left(\frac{a}{2}\right)$ $\binom{a}{n}=\prod_{i=1}^k\Big(\frac{a}{p_i}$ $\overline{p_i}$ $\int_{0}^{e_i}$. (By convention, this product is 1 when $k = 0$, so $\left(\frac{a}{4}\right)$ $\left(\frac{a}{1}\right) = 1.$ The Jacobi and Legendre symbols agree when *n* is an odd prime. If $\left(\frac{a}{n}\right)$ $\left(\frac{a}{n}\right) = -1$ then *a* is definitely not a quadratic residue modulo *n*, but if $\left(\frac{a}{n}\right)$ $\left(\frac{a}{n}\right) = 1$, a might or might not be a quadratic residue.
- Computing the Jacobi symbol $\left(\frac{a}{n}\right)$ $\frac{a}{n}$) can be computed efficiently by a straightforward recursive algorithm, based on the following identities: $\left(\frac{0}{1}\right)$ $\left(\frac{0}{1}\right) = 1; \left(\frac{0}{n}\right)$ $\left(\frac{0}{n}\right) = 0$ for $n \neq 1$; $\left(\frac{a_1}{n}\right) = \left(\frac{a_2}{n}\right)$ if $a_1 \equiv a_2 \pmod{n}$; $\left(\frac{2}{n}\right)$ $\left(\frac{2}{n}\right)$ = 1 if $n \equiv \pm 1 \pmod{8}$; $\left(\frac{2}{n}\right)$ $\left(\frac{2}{n}\right)$ = -1 if $n \equiv \pm 3 \pmod{8};$ $\sqrt{2a}$ $\left(\frac{2a}{n}\right) \;=\; \left(\frac{2}{n}\right)$ $\left(\frac{2}{n}\right)$ $\left(\frac{a}{n}\right)$ $\frac{a}{n}$); $\left(\frac{a}{n}\right)$ $\frac{a}{n}$ = $\left(\frac{n}{a}\right)$ $\frac{n}{a}$ if $a \equiv 1 \pmod{4}$ or $n \equiv 1 \pmod{4}$; $\left(\frac{a}{n}\right)$ $\frac{a}{n}$) = - $\left(\frac{n}{a}\right)$ $\frac{n}{a}$) if $a \equiv n \equiv 3 \pmod{4}$.
- **Solovay-Strassen test for compositeness** Let $n \in \mathbb{Z}^+$. If n is composite, then for roughly 1/2 of the numbers $a \in \mathbf{Z}_n^*$, $\left(\frac{a}{n}\right)$ $\left(\frac{a}{n}\right) \not\equiv a^{(n-1)/2} \pmod{n}$. If *n* is prime, then for every $a \in \mathbf{Z}_n^*$, $\frac{a}{a}$ $\frac{a}{n}$) $\equiv a^{(n-1)/2} \pmod{n}$.
- **Miller-Rabin test for compositeness** Let $n \in \mathbb{Z}^+$ and write $n-1 = 2^k m$, where m is odd. Choose $1 \le a \le n-1$. Compute $b_i = a^{m2^i} \mod n$ for $i = 0, 1, ..., k-1$. If n is composite, then for roughly 3/4 of the possible values for a, $b_0 \neq 1$ and $b_i \neq -1$ for $0 \leq i \leq k - 1$. If n is prime, then for every a, either $b_0 = 1$ or $b_i = -1$ for some $i, 0 \le i \le k - 1$.

Michael J. Fischer (Thanks to Miklós Csűrös, Andrei Serjantov, and Jerry Moon for pointing out errors in previous drafts.)

Last modified: October 26, 2000.