YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Handout #5

Professor M. J. Fischer **Professor M. J. Fischer**

Linear Congruence Equations

Let $a, x \in \mathbb{Z}_n^*$. Recall that x is said to be an *inverse* of a modulo n if $ax \equiv 1 \pmod{n}$. It is easily seen that the inverse, if it exists, is unique modulo n, for if $ax \equiv 1 \pmod{n}$ and $ay \equiv 1$ (mod n), then $x \equiv xay \equiv y \pmod{n}$. We denote this unique x, when it exists, by $a^{-1} \pmod{n}$ (or simply a^{-1} when the modulus *n* is clear from context).

Theorem 1 Let $a \in \mathbb{Z}_n^*$. Then a^{-1} exists in \mathbb{Z}_n^* .

Proof: Let $a \in \mathbb{Z}_n^*$ and consider the function $f_a(x) = ax \mod n$. f_a is easily shown to be a oneone mapping from \mathbf{Z}_n^* to \mathbf{Z}_n^* . Hence, f_a is also onto, so for some $x \in \mathbf{Z}_n^*$, $f_a(x) = 1$. Then $ax \equiv 1$ \pmod{n} , so $x = a^{-1} \pmod{n}$.

We showed in class how to use the Extended Euclidian algorithm to efficiently compute a^{-1} $(mod n)$ given a and n.

Here we consider the solvability of the more general linear congruence equation:

$$
ax \equiv b \pmod{n} \tag{1}
$$

where $a, b \in \mathbb{Z}_n^*$ are constants, and x is a variable ranging over \mathbb{Z}_n^* .

Theorem 2 Let $a, b, n \in \mathbb{Z}_n^*$. Let $d = \gcd(a, n)$. If $d \mid b$ then $ax \equiv b \pmod{n}$ has d solutions x_0, \ldots, x_{d-1} *, where*

$$
x_t = \left(\frac{b}{d}\right)\bar{x} + \left(\frac{n}{d}\right)t\tag{2}
$$

and $\bar{x} = \left(\frac{a}{d}\right)^{-1}$ (mod $\left(\frac{n}{d}\right)$)*. If* $d \nmid n$ *, then* $ax \equiv b \pmod{n}$ *has no solutions.*

Proof: Let $d = \gcd(a, n)$. Clearly if $ax \equiv b \pmod{n}$, then $d \mid b$, so there are no solutions if $d \nmid b$.

Now suppose $d \mid b$. Since $\left(\frac{a}{d}\right)$ $\frac{a}{d}$) and $\left(\frac{n}{d}\right)$ $\frac{n}{d}$) are relatively prime, \bar{x} exists by Theorem [1.](#page-0-0) Multiplying both sides of (2) by a, we get

$$
ax_t = b\left(\frac{a}{d}\right)\bar{x} + n\left(\frac{a}{d}\right)t\tag{3}
$$

where now we are working over the integers. But $\left(\frac{a}{d}\right)$ $\frac{a}{d}$) $\bar{x} = 1 + \frac{kn}{d}$ for some k by the definition of \bar{x} , so substituting for $\left(\frac{a}{d}\right)$ $\frac{a}{d}$) \bar{x} in [\(3\)](#page-0-2) yields

$$
ax_t = b + kn\left(\frac{b}{d}\right) + n\left(\frac{a}{d}\right)t\tag{4}
$$

The quantities in parentheses are both integers, so it follows immediately that $ax_t \equiv b \pmod{n}$ and hence x_t is a solution of [\(1\)](#page-0-3).

It remains to show that the d solutions above are distinct modulo n . But this is obvious since $x_0 < x_1 < \ldots < x_{d-1}$ and $x_{d-1} - x_0 = \frac{n}{d}$ $\frac{n}{d}(d-1) < n.$