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Linear Congruence Equations

Let a,x € Z7. Recall that x is said to be an inverse of a modulo n if ax = 1 (mod n). It is
easily seen that the inverse, if it exists, is unique modulo n, for if az = 1 (mod n) and ay = 1
(mod n), then x = zay = y (mod n). We denote this unique z, when it exists, by a=! (mod n)
(or simply a~! when the modulus 7 is clear from context).

Theorem 1 Let a € Z7. Then a™! exists in Z.

Proof: Let a € Z} and consider the function f,(x) = ax mod n. f, is easily shown to be a one-
one mapping from Z7, to Z. Hence, f, is also onto, so for some x € Z7,, f,(x) = 1. Thenaz =1
(mod n),sox =a~! (mod n). [

We showed in class how to use the Extended Euclidian algorithm to efficiently compute a !

(mod n) given a and n.
Here we consider the solvability of the more general linear congruence equation:

axr =b (mod n) (1)
where a, b € Z}, are constants, and x is a variable ranging over Z;.

Theorem 2 Let a,b,n € Z}. Let d = ged(a,n). If d|b then ax = b (mod n) has d solutions

xo, - ..,T4_1, where
b\ _ n
T = (d) T+ (d) t )

and z = (%)~" (mod (%)). Ifd { n, then ax = b (mod n) has no solutions.

Proof: Let d = ged(a,n). Clearly if ax = b (mod n), then d|b, so there are no solutions if d 1 b.
Now suppose d | b. Since (§) and (%) are relatively prime, Z exists by Theorem Multiplying

both sides of (2)) by a, we get
a a
axt—b(d>i‘+n(d>t 3)

where now we are working over the integers. But (%) z=1+ %” for some k by the definition of z,
so substituting for (%) Z in (3 yields

ary = b+ kn (Z>+n(g)t 4)

The quantities in parentheses are both integers, so it follows immediately that ax; = b (mod n)
and hence z; is a solution of (I)).

It remains to show that the d solutions above are distinct modulo n. But this is obvious since
ro<w <...<z91andzg 1 —x0=5(d—1)<n. [ ]




