
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Handout #6
Professor M. J. Fischer October 5, 2006

The Legendre and Jacobi Symbols
Let a ≥ 0, n ∈ Z+. Let QR(a, n) hold if (a, n) = 1 and a is a quadratic residue modulo n. Let

QNR(a, n) hold if (a, n) = 1 and a is a quadratic non-residue modulo n (i.e., there is no y ∈ Z∗n
such that a ≡ y2 (mod n)).

For a prime p, the structure of quadratic residues can be fairly easily explained. Let g be a primi-
tive root of Z∗p. Then every element of Z∗p is uniquely expressible as gk for some k ∈ {0, . . . , p−2}.

Theorem 1 Let p be a prime, g a primitive root of p, a ≡ gk (mod p). Then a is a quadratic
residue iff k is even.

Proof: If k is even, then gk/2 is easily seen to be a square root of a modulo p.
Conversely, suppose a ≡ y2 (mod p). Write y ≡ g` (mod p). Then gk ≡ g2` (mod p).

Multiplying both sides by g−k, we have 1 ≡ g0 ≡ g2`−k (mod p). But then φ(p) | 2` − k. Since
2 |φ(p) = p− 1, it follows that 2 |k, as desired.

The following theorem, due to Euler, is now easily proved:

Theorem 2 (Euler) Let p be an odd prime, and let a ≥ 0, (a, p) = 1. Then

a(p−1)/2 ≡
{

1 (mod p) if QR(a, p) holds;
−1 (mod p) if QNR(a, p) holds.

Proof: Write a ≡ gk (mod p).
If QR(a, p) holds, then a is a quadratic residue modulo p, so k is even by Theorem 1. Write

k = 2r for some r. Then a(p−1)/2 ≡ g2r(p−1)/2 ≡ (gr)p−1 ≡ 1 (mod p) by Fermat’s theorem.
If QNR(a, p) holds, then a is a quadratic non-residue modulo p, so k is odd by Theorem 1.

Write k = 2r + 1 for some r. Then a(p−1)/2 ≡ g(2r+1)(p−1)/2 ≡ gr(p−1)g(p−1)/2 ≡ g(p−1)/2

(mod p). Let b = g(p−1)/2. Clearly b2 ≡ 1 (mod p), so b ≡ ±1 (mod p).1 Since g is a primitive
root modulo p and (p− 1)/2 < p− 1, b = g(p−1)/2 6≡ 1 (mod p). Hence, b ≡ −1 (mod p).

Definition: The Legendre symbol is a function of two integers a and p, written
(

a
p

)
. It is defined

for a ≥ 0 and p an odd prime as follows:

(
a

p

)
=


1 if QR(a, p) holds;

−1 if QNR(a, p) holds;
0 if (a, p) 6= 1.

A multiplicative property of the Legendre symbols follows immediately from Theorem 1.

Observation 3 Let a, b ≥ 0, p an odd prime. Then(
ab

p

)
=

(
a

p

)
·

(
b

p

)
.

1This follows from the fact that p|(b2 − 1) = (b− 1)(b + 1), so either p | (b− 1), in which case b ≡ 1 (mod p), or
p |(b + 1), in which case b ≡ −1 (mod p).

2 The Legendre and Jacobi Symbols

As an easy corollary of Theorem 2, we have:

Corollary 4 Let a ≥ 0 and let p be an odd prime. Then(
a

p

)
≡ a(p−1)/2 (mod p).

The Jacobi symbol extends the domain of the Legendre symbol.

Definition: The Jacobi symbol is a function of two integers a and n, written
(

a
n

)
, that is defined

for all a ≥ 0 and all odd positive integers n. Let
∏k

i=1 pei
i be the prime factorization of n. Then

(
a

n

)
=

k∏
i=1

(
a

pi

) ei

.

Here
(

a
pi

)
denotes the previously-defined Legendre symbol. (Note that by this definition,

(
0
1

)
= 1,

and
(

0
n

)
= 0 for odd n ≥ 3.)

We have seen that if (a, p) = 1 and p is prime, then the Legendre symbol
(

a
p

)
= 1 iff a is a

quadratic residue modulo p. It is not true for the Jacobi symbol that
(

a
n

)
≡ 1 (mod n) implies that

a is a quadratic residue modulo n. For example,
(

8
15

)
= 1, but 8 is not a quadratic residue modulo

15. However, the converse does hold:

Observation 5 If
(

a
n

)
6≡ 1 (mod n), then a is not a quadratic residue modulo n.

The usefulness of the Jacobi symbol
(

a
n

)
stems from its ability to be computed efficiently,

even without knowning the factorization of either a or n. The algorithm is based on the following
theorem, which is stated without proof.

Theorem 6 Let n be an odd positive integer, a, b ≥ 0. Then the following identities hold:

(a)
(

0
n

)
=

{
1 if n = 1;
0 if n > 1

(b)
(

2
n

)
=

{
1 if n ≡ ±1 (mod 8);

−1 if n ≡ ±3 (mod 8)

(c)
(

a

n

)
=

(
b

n

)
if a ≡ b (mod n).

(d)
(

ab

n

)
=

(
a

n

)
·

(
b

n

)
(e) (Quadratic reciprocity). If a is odd, then(

a

n

)
=

{
−

(
n
a

)
if a ≡ n ≡ 3 (mod 4);(

n
a

)
otherwise.

Theorem 6 leads directly to a recursive algorithm for computing
(

a
n

)
:

Handout #6—October 5, 2006 3

int jacobi(int a, int n)
/* Precondition: a, n >= 0; n is odd */
{

int ans;

if (a == 0)
ans = (n==1) ? 1 : 0;

else if (a == 2) {
switch (n%8) {
case 1:
case 7:

ans = 1;
break;

case 3:
case 5:

ans = -1;
break;

}
}
else if (a >= n)

ans = jacobi(a%n, n);
else if (a%2 == 0)

ans = jacobi(2,n)*jacobi(a/2, n);
else

ans = (a%4 == 3 && n%4 == 3) ? -jacobi(n,a) : jacobi(n,a);
return ans;

}

