YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Handout #6
Professor M. J. Fischer October 5, 2006

The Legendre and Jacobi Symbols

Leta > 0,n € Z*. Let QR(a,n) hold if (a,n) = 1 and a is a quadratic residue modulo n. Let
QNR(a,n) hold if (a,n) = 1 and a is a quadratic non-residue modulo n (i.e., there isno y € Z
such that a = y? (mod n)).

For a prime p, the structure of quadratic residues can be fairly easily explained. Let g be a primi-
tive root of Z,,. Then every element of Z is uniquely expressible as g* forsome k € {0,...,p—2}.

Theorem 1 Let p be a prime, g a primitive root of p, a = g* (mod p). Then a is a quadratic
residue iff k is even.

Proof: If k is even, then ¢*/2 is easily seen to be a square root of a modulo p.

Conversely, suppose a = y? (mod p). Write y = g* (mod p). Then ¢* = ¢g* (mod p).
Multiplying both sides by g%, we have 1 = ¢° = ¢** (mod p). But then ¢(p) | 2¢ — k. Since
2|¢(p) = p — 1, it follows that 2| k, as desired. [|

The following theorem, due to Euler, is now easily proved:

Theorem 2 (Euler) Let p be an odd prime, and let a > 0, (a,p) = 1. Then

QP12 = 1 (mod p) if QR(a,p) holds;
| =1 (mod p) if QNR(a,p) holds.

Proof: Write a = ¢ (mod p).

If QR(a,p) holds, then a is a quadratic residue modulo p, so & is even by Theorem [I} Write
k = 2r for some r. Then a(?~1/2 = ¢2"(=1)/2 = (¢7)P=1 =1 (mod p) by Fermat’s theorem.

If QNR(a,p) holds, then a is a quadratic non-residue modulo p, so k is odd by Theorem
Write k = 2r + 1 for some 7. Then a?~1/2 = ¢@r+D@e-1)/2 = gr@-1)4p-1/2 = 4-1)/2
(mod p). Let b = g®=1/2 Clearly b*> = 1 (mod p),sob = +1 (mod p) Since g is a primitive
root modulo pand (p —1)/2 <p—1,b=g?~1D/2 £ 1 (mod p). Hence, b = —1 (mod p).

|

Definition: The Legendre symbol is a function of two integers a and p, written (%) . It is defined
for a > 0 and p an odd prime as follows:

a 1 if QR(a, p) holds;
() =< —1if QNR(a, p) holds;
p 0if (a,p) # 1.

A multiplicative property of the Legendre symbols follows immediately from Theorem I}
Observation 3 Let a,b > 0, p an odd prime. Then
5)=G)-G)
p v/ \p/)

'This follows from the fact that p|(b*> — 1) = (b — 1)(b 4+ 1), so either p| (b — 1), in which case b = 1 (mod p), or
p|(b+ 1), in which case b = —1 (mod p).

2 The Legendre and Jacobi Symbols

As an easy corollary of Theorem [2] we have:

Corollary 4 Let a > 0 and let p be an odd prime. Then

(a) = a2 (mod p).
p

The Jacobi symbol extends the domain of the Legendre symbol.

Definition: The Jacobi symbol is a function of two integers a and n, written (2), that is defined
for all @ > 0 and all odd positive integers n. Let H§:1 p;' be the prime factorization of n. Then

()-1G)

n i—1 \Di .

Here (pi) denotes the previously-defined Legendre symbol. (Note that by this definition, (%) =1,
and (%) =0 foroddn > 3)

We have seen that if (a,p) = 1 and p is prime, then the Legendre symbol (%) =1liffaisa
quadratic residue modulo p. It is not true for the Jacobi symbol that (%) =1 (mod n) implies that
a is a quadratic residue modulo n. For example, (1—85) = 1, but 8 is not a quadratic residue modulo
15. However, the converse does hold:

Observation 5 If (£) # 1 (mod n), then a is not a quadratic residue modulo n.

The usefulness of the Jacobi symbol (%) stems from its ability to be computed efficiently,
even without knowning the factorization of either a or n. The algorithm is based on the following
theorem, which is stated without proof.

Theorem 6 Let n be an odd positive integer, a,b > 0. Then the following identities hold:

o () -{3 a2

2\ 1 ifn =41 (mod 8);
(b) <n) _{ —1 ifn =43 (mod 8)

(c) (Z) = (2) ifa="5b (mod n).

@ (2)-)-()
n n n
(e) (Quadratic reciprocity). If a is odd, then
(a)_{ — (%) ifa=n=3 (mod 4);
- =

(%) otherwise.

Theorem@ leads directly to a recursive algorithm for computing (%) :

Handout #6—CQOctober 5, 2006

int jacobi(int a, int n)
/* Precondition: a, n >=

{

int ans;

0; n is odd %/

if (a ==

0)
ans = (n=
a
(

=

)y 21 : 0;
else if (a == 2) {
switch (n%8) {
case 1:
case 7:

ans = 1;

break;
case 3:
case 5:

ans = -1;

break;

}
else if (a >= n)

ans = jacobi (a%n, n);
else 1f (a%2 == 0)

ans = jacobi (2,n)xJjacobi(a/2, n);
else
ans = (a%4 == 3 && n%4 == 3) ? -jacobi (n,a)

return ans;

jacobi(n,a);

