Problem Set 7

Due on Friday, December 8, 2006.

Problem 28: Secret sharing implementation

This problem is to implement Shamir's secret splitting scheme. You should write three programs:
dealer takes three command line arguments: a secret s, a threshold τ, and a number of shares k, where $1 \leq \tau \leq k$. It writes $2 k+3$ whitespace-separated decimal integers (with no labels) to standard output: a prime p, the numbers τ and k, and a list of k shares $\left(1, s_{1}\right), \ldots,\left(k, s_{k}\right)$, where the shares are computed from the secret s according to Shamir's (τ, k) secret splitting scheme. In particular, dealer finds a suitable prime p, generates a random polynomial $p(x)$ with coefficients in \mathbf{Z}_{p} that encodes the secret s, and then generates the k shares.
filter reads $2 k+3$ numbers from standard input as written by dealer. It selects a random subset of τ distinct shares from among the k input shares and writes $2 \tau+2$ whitespaceseparated decimal integers to standard output: a prime p, a number τ, and a list of the τ randomly-selected shares $\left(i_{1}, s_{i_{1}}\right), \ldots,\left(i_{\tau}, s_{i_{\tau}}\right)$.
recover reads $2 \tau+2$ numbers from standard input as written by filter. It finds the secret s determined from its inputs according to Shamir's scheme and writes it to standard output.

You may assume that all numbers are less than 2^{31}, so your program can use ordinary C integers rather than bother with the big number packages. However, since you need to generate a prime p, you might still find it convenient to use one of the primality-testing routines from those packages.

Problem 29: Coin-flipping

Do problem 13.3.2 in the textbook ${ }^{1}$ which refers to the coin-flipping protocol of section 13.1 .

Problem 30: Indistinguishability

We say that judge $J(z) \epsilon$-distinguishes random variables X and Y if

$$
|\operatorname{prob}[J(X)=1]-\operatorname{prob}[J(Y)=1]| \geq \epsilon .
$$

Let U_{n} be the uniform distribution on binary strings of length n. Let X_{n} be the distribution that results from n flips of a biased coin, where the probability of 1 ("heads") is $2 / 3$ and the probability of 0 ("tails") is $1 / 3$.
(a) What is the largest value of ϵ for which there exists a probabilistic polynomial time judge $J(z)$ to ϵ-distinguish U_{1} from X_{1} ? Describe such a judge.
(b) How large can ϵ be as a function of n for a judge that distinguishes U_{n} from X_{n} ? Describe a judge achieving this level of distinguishability.

[^0]
[^0]: ${ }^{1}$ Trappe and Washington, Introduction to Cryptography with Coding Theory: Second Edition.

