YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security

Professor M. J. Fischer

Handout #16 December 1, 2006

Problem Set 7

Due on Friday, December 8, 2006.

Problem 28: Secret sharing implementation

This problem is to implement Shamir's secret splitting scheme. You should write three programs:

- **dealer** takes three command line arguments: a secret s, a threshold τ , and a number of shares k, where $1 \le \tau \le k$. It writes 2k + 3 whitespace-separated decimal integers (with no labels) to standard output: a prime p, the numbers τ and k, and a list of k shares $(1, s_1), \ldots, (k, s_k)$, where the shares are computed from the secret s according to Shamir's (τ, k) secret splitting scheme. In particular, dealer finds a suitable prime p, generates a random polynomial p(x) with coefficients in \mathbb{Z}_p that encodes the secret s, and then generates the k shares.
- **filter** reads 2k + 3 numbers from standard input as written by dealer. It selects a random subset of τ distinct shares from among the k input shares and writes $2\tau + 2$ whitespace-separated decimal integers to standard output: a prime p, a number τ , and a list of the τ randomly-selected shares $(i_1, s_{i_1}), \ldots, (i_{\tau}, s_{i_{\tau}})$.
- **recover** reads $2\tau + 2$ numbers from standard input as written by filter. It finds the secret s determined from its inputs according to Shamir's scheme and writes it to standard output.

You may assume that all numbers are less than 2^{31} , so your program can use ordinary C integers rather than bother with the big number packages. However, since you need to generate a prime p, you might still find it convenient to use one of the primality-testing routines from those packages.

Problem 29: Coin-flipping

Do problem 13.3.2 in the textbook,¹ which refers to the coin-flipping protocol of section 13.1.

Problem 30: Indistinguishability

We say that judge $J(z) \epsilon$ -distinguishes random variables X and Y if

$$|\operatorname{prob}[J(X) = 1] - \operatorname{prob}[J(Y) = 1]| \ge \epsilon.$$

Let U_n be the uniform distribution on binary strings of length n. Let X_n be the distribution that results from n flips of a biased coin, where the probability of 1 ("heads") is 2/3 and the probability of 0 ("tails") is 1/3.

- (a) What is the largest value of ϵ for which there exists a probabilistic polynomial time judge J(z) to ϵ -distinguish U_1 from X_1 ? Describe such a judge.
- (b) How large can ϵ be as a function of n for a judge that distinguishes U_n from X_n ? Describe a judge achieving this level of distinguishability.

¹Trappe and Washington, Introduction to Cryptography with Coding Theory: Second Edition.