
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467a: Cryptography and Computer Security Notes 5 (rev. 1)
Professor M. J. Fischer September 21, 2006

Lecture Notes 5

25 Data Encryption Standard (DES)

The Data Encryption Standard is a block cipher that operates on 64-bit blocks and uses a 56-bit
key. It was the standard algorithm for data encryption for over 20 years until it became widely
acknowledged that the key length was too short and it was subject to brute force attack. (The new
standard used the Rijndael algorithm and is called AES.)

25.1 Feistel Networks

DES is based on a Feistel network. This is a general method for building an invertible function from
any function f that scrambles bits. It consists of some number of stages. Each stage i maps a pair
of 32-bit words (Li, Ri) to a new pair (Li+1, Ri+1). By applying the stages in sequence, a t-stage
network maps (L0, R0) to (Lt, Rt). The (L0, R0) is the plaintext, and (Lt, Rt) is the corresponding
ciphertext.

Each stage works as follows:
Li+1 = Ri (1)

Ri+1 = Li ⊕ f(Ri,Ki) (2)

Here, Ki is a subkey, which is generally derived in some systematic way from the master key k.
The security of a Feistel-based code lies in the construction of the function f and in the method

for producing the subkeys Ki, However, the invertibility follows just from properties of ⊕.
The inversion problem is to find (Li, Ri) given (Li+1, Ri+1). Equation 1 gives us Ri. Knowing

Ri and Ki, we can compute f(Ri,Ki). We can then solve equation 2 to get

Li = Ri+1 ⊕ f(Ri,Ki)

DES uses a 16 stage Feistel network. The pair L0R0 is constructed from a 64-bit message by a
fixed initial permutation IP. The ciphertext output is obtained by applying IP−1 to R16L16.

The scrambling function f(Ri,Ki) operates on a 32-bit data block and a 48-bit key block. Thus,
a total of 48× 16 = 768 key bits are used. They are all derived in a systematic way from the 56-bit
primary key and are far from independent of each other.

25.2 The Scrambling Function

The scrambling function f(Ri,Ki) is the heart of DES. It operates on a 32-bit data block and a 48-
bit key block. Thus, a total of 48× 16 = 768 key bits are used. They are all derived in a systematic
way from the 56-bit master key k and are far from independent of each other. In a little more detail,
k is split into two 28-bit pieces C and D. At each stage, C and D are rotated by one or two bit
positions. Subkey Ki is then obtained by applying a fixed permutation (transposition) to CD. (See
Table 3.4c of the text.)

The scrambling function itself is rather involved. However, at its heart are eight “S-boxes”.
These are boxes with 6 binary inputs c0, x1, x2, x3, x4, c1 and 4 binary outputs y1, y2, y3, y4. Each

2 CPSC 467a Lecture Notes 5 (rev. 1)

computes some fixed function in {0, 1}6 → {0, 1}4. Moreover, each S-box has the very special
property that for each of the four possible ways of fixing the values of (c0, c1) to Boolean constants,
the resulting function on the remaining four inputs x1, . . . , x4 is a permutation from {0, 1}4 →
{0, 1}4. Therefore, we can regard an S-box as performing a substitution on four-bit “characters”,
where the substitution performed depends both on the structure of the particular S-box and on the
values of its “control inputs” c0 and c1. The eight S-boxes are all different and are specified by their
truth tables.

The S-boxes together have a total of 48 input lines. Each of these lines is the output of a
corresponding ⊕-gate. One input of each of these ⊕-gates is connected to a corresponding bit of
the 48-bit subkey Ki. (This is the only place that the key enters into DES.) The other input of each
⊕-gate is connected to one of the 32 bits of the first argument of f . Since there are 48 ⊕-gates and
only 32 bits in the first argument to f , some of those bits get used more than once. The mapping of
input bits to ⊕-gates is called the expansion permutation E and is given by Table 3.2(c) in the text.
By looking at the table, one sees that the ⊕-gates connected to the six inputs c0, x1, x2, x3, x4, c1

for S-box 1 are in turn connected to the input bits 32, 1, 2, 3, 4, 5, respectively. For S-box 2, they
go to bits 4, 5, 6, 7, 8, 9, etc. Thus, inputs bits 1, 4, 5, 8, 9, . . . 28, 29, 32 are each used twice, and the
remaining input bits are each used once.

Finally, the 32 bits of output from the S-boxes are passed through a fixed permutation P (trans-
position) that spreads out the output bits. The outputs of a single S-box at one stage of DES become
inputs to several different S-boxes at the next stage. This helps provide the desirable “avalanche”
effect described in the text.

25.3 Security considerations

We have mentioned previously that DES is vulnerable to a brute force attack because of its small key
size of only 56 bits. However, it has turned out to be remarkably resistant to two recently discovered
cryptanalysis attacks, differential cryptanalysis and linear cryptanalysis. The former can break DES
using “only” 247 chosen ciphertext pairs. The latter works with 243 chosen plaintext pairs. Neither
attack is feasible in practice.

DES has now been replaced as a national standard by the new AES (Advanced Encryption
Standard), based on the Rijndael algorithm, developed by two Dutch computer scientists. AES
supports key sizes of 128, 192, and 256 bits and works on 128-bit blocks. We will say more about
it later in the course.

26 Double Encryption and Group Property

A natural way to attempt to increase the security of a cryptosystem is double encryption. Each
message is encrypted twice using two different keys k1 and k2. That is, c = Ek2(Ek1(m). Now,
a brute force attack would require trying all possible keys k1 and all possible keys k2, thereby
doubling the effective key length. In the case of DES, this would result in a key length of 112 which
is plenty large enough to make a full enumeration of the key space infeasible.

Unfortunately, double encryption does not increase the security of a cryptosystem as much as
one might naively think. The reason is that it allows new kinds of attacks that are more efficient
than brute force.

We consider two cases: When the underlying cryptosystem is a group, and when it is not. DES
has been shown not to be a group.

CPSC 467a Lecture Notes 5 (rev. 1) 3

26.1 Group property and birthday attacks

Double encryption is really a new cryptosystem created by composing two encryption functions. Let
k̂ = (k1, k2) be the key of the double encryption system, and let Êk denote the resulting encryption
function, that is,

Êk̂(m) = Ek2(Ek1(m))

Combining two functions in this way to define a new function is called functional composition. We
often write Êk̂ = Ek2 ◦ Ek1 to denote the result of composing Ek2 with Ek1 .

Let E = {Ek() | k ∈ K} be the set of possible encryption functions of the original cryptosys-
tem, where K is the key space. It might happen that Êk̂() = Ek() for some k ∈ K. That is, there
might be a key k of the original cryptosystem such that encrypting any message m with it gives
the same ciphertext as encrypting m first with k1 and then with k2. If this is the case for every
k1, k2 ∈ K, then the original cryptosystem is said to be closed under functional composition, and
we say that it is a group.

When the cryptosystem is a group, double encryption adds no security against a brute force
attack. Even though the key length has doubled, the number of distinct encryption functions has
not increased (and might actually have decreased). Since every double encryption is same as a
single encryption, the double encryption system will fall to a brute force attack on the original
cryptosystem.

But it’s even worse. If a cryptosystem system is a group, then it is subject to a known plaintext
“birthday” attack,1 which reduces the number of keys that must be tried to roughly the square root
of what a brute force attack needs. For example, if the original key length was 56, then only about√

256 = 228 keys need be tried.
Briefly, here’s how it works: Let (m, c) be a known plaintext-ciphertext pair. Choose 228

random keys k1 and encrypt m using each. Choose another 228 random keys k2 and decrypt c
using each. Look for a match between these two sets. Assuming reasonable randomness prop-
erties of the encryption function, there is a significant probability of finding k1 and k2 such that
Ek1(m) = Dk2(c). But this implies that Ek2(Ek1(m)) = c. In this case, we have succeeded in
finding one key pair that works. In all likelihood there are not many pairs that do work, so with
significant probability we have cracked the system. Using additional plaintext-ciphertext pairs, we
can verify that we have likely found the correct key pair, or repeat this process again if we have not
yet succeeded. I’ve glossed over many assumptions and details, but that’s the basic idea.

The drawback to the birthday attack (from the attacker’s perspective) is that it requires a lot of
storage in order to find a matching element. Nevertheless, if DES were a group, this attack could be
carried out in about a gigabyte of storage, easily within the storage capacity of modern workstations.

26.2 What happens when original system is not a group?

Even if the original system is not a group, double encryption still does not result in a cryptosystem
with twice the effective key length. The reason is another “birthday”-style known-plaintext attack.

Let’s consider the case of double DES. As before, we start with a known plaintext-ciphertext
pair (m, c). We carry out a birthday attack by encrypting m under many different keys, decrypting
c under many different keys, and hope we find a matching element in the resulting two sets. Unlike
the attack described in section 26.1, we encrypt m and decrypt c using all possible DES keys. Thus,

1Wikipedia states, “In probability theory, the birthday paradox states that given a group of 23 (or more) randomly
chosen people, the probability is more than 50% that at least two of them will have the same birthday.” This is far less
than the 253 people that are needed for the probability to exceed 1/2 that at least one of them was born on a specific day,
say January 1.

http://en.wikipedia.org/wiki/Birthday_paradox

4 CPSC 467a Lecture Notes 5 (rev. 1)

we are guaranteed of finding at least one match, since if (k1, k2) is the real key pair used in the
double encryption, then Ek1(m) = Dk2(c). If there is only one match, then we have found the key
pair and broken the system. If there are several matches, we know that the key pair is one of the
matching pairs. This set is likely to be much much smaller than 256, so they can each be tried on
additional plaintext-ciphertext pairs to find which ones work. (Note that there might be more than
one key pair that results in the same encryption function. In that case, we won’t be able to know
which key pair Alice actually used in generating the ciphertexts, but we will be able to find a pair
that is just as good and that lets us decrypt her messages.)

27 Triple DES

Three key triple DES (3TDES) avoids the birthday attack by using three DES encryptions, i.e.,
Ek3(Ek2(Ek1(m))), giving it an actual key length of 168 bits. While considerably more secure than
single DES, for which a brute force attack requires only 256 decryptions, 3TDES can be broken
(in principle) by a known plaintext attack using about 290 single DES encryptions and 2113 steps.
While this attack is still not practical, the effective security thus lies in the range between 90 and
113, which is much smaller than the apparent 168 bits.2

A variant of triple DES in which the middle step is a decryption instead of an encryption is
known as TDES-EDE, i.e., Ek3(Dk2(Ek1(m))). The variant does not affect the security, but it
means that TDES-EDE encryption and decryption functions can be used to perform single DES
encryptions and decryptions by taking k1 = k2 = k3 = k, where k is the single DES key.

Another variant, two key triple DES (2TDES) uses only two keys k1 and k2, taking k3 = k1.
However, known plaintext attacks or chosen plaintext attacks reduce the effective security to only
80 bits. See Wikipedia for further information on triple DES.

28 Block Ciphers

A b-bit block cipher takes as inputs a key and a b-bit plaintext block and produces a b-bit ciphertext
block as output. Most of the ciphers we have been discussing so far are of this type. Block ciphers
typically operate on fairly long blocks, e.g., 64-bits for DES, 128-bits for Rijndael (AES). Block
ciphers can be designed to resist known-plaintext attacks and can therefore be pretty secure, even if
the same key is used to encrypt a succession of blocks, as is often the case.

Of course, the length messages one wants to send are rarely exactly the block length. To use a
block cipher to encrypt long messages, one first divides the message into blocks of the right length,
padding the last partial block according to a suitable padding rule. Then the block cipher is used
in some chaining mode to encrypt the sequence of resulting blocks. A chaining mode tells how
to encrypt a sequence of plaintext blocks m1,m2, . . . ,mt to produce a corresponding sequence of
ciphertext blocks c1, c2, . . . , ct, and conversely, how to recover the mi’s given the ci’s.

Padding involves more than just sticking 0’s on the end of a message until its length is a multiple
of the block length. The reason is that one must be able to recover the original message from the
padded version. If one tacks on a variable number of 0’s during padding, how many are to be
removed at the end? To solve this problem, a padding rule must include the information about how
much padding was added. There are many ways to do this. One way is to pad each message with

2The effective security measures the amount of work it takes to break a cryptosystem by comparing it with the amount
of work required to carry out a brute force attack on a cryptosystem with keys of that length. Thus, a cryptosystem that
can be broken in time 290 is said to have 90-bit effective security, even if the actual key length is much greater, since it is
no more secure than a system with a 90-bit key.

http://en.wikipedia.org/wiki/Triple_DES

CPSC 467a Lecture Notes 5 (rev. 1) 5

a string of 0’s followed by a fixed-length binary representation of the number of 0’s added. For
example, if the block length is 64, then at most 63 0’s ever need to be added, so a 6-bit length
field is sufficient. A message m is then padded to become m′ = m · 0k · k, where k is a number
in the range [0, 63] and k is its representation as a 6-bit binary number. k is then chosen so that
|m′| = |m|+ k + 6 is a multiple of b.

Some standard chaining modes are:

• Electronic Codebook Mode (ECB) – apply cipher to each plaintext block. That is, ci =
Ek(mi) for each i. This becomes in effect a monoalphabetic cipher, where the “alphabet” is
the set of all possible blocks and the permutation is defined by Ek. To decrypt, Bob computes
mi = Dk(ci).

• Cipher Block Chaining Mode (CBC) – encrypt the XOR of the current plaintext block with the
previous ciphertext block to produce the current ciphertext block. That is, ci = Ek(mi⊕ci−1).
To get started, we take c0 = IV, where IV is a fixed initialization vector which we assume is
publicly known. To decrypt, Bob computes mi = Dk(ci)⊕ ci−1.

• Cipher-Feedback Mode (CFB) – XOR the current plaintext block with the encryption of the
previous ciphertext block. That is, ci = mi⊕Ek(ci−1), where again, c0 is a fixed initialization
vector. To decrypt, Bob computes mi = ci ⊕ Ek(ci−1). Note that Bob is able to decrypt
without using the block decryption function Dk. In fact, it is not even necessary for Ek to be
a one-to-one function (but using a non one-to-one function might weaken security).

• Output Feedback Mode (OFB) – the encryption function is iterated on an initial vector (IV) to
produce a stream of block keys, which in turn are XORed with the successive plaintext blocks
to produce the successive ciphertext blocks. (This is similar to a simple keystream generator.)
That is, ci = mi⊕ki, where ki = Ek(ki−1) is a block key. k0 is a fixed initialization vector IV.
To decrypt, Bob can apply exactly the same method to the ciphertext to get the plaintext, that
is, mi = ci ⊕ ki, where ki = Ek(ki−1).

• Propagating Cipher-Block Chaining Mode (PCBC) – encrypt the XOR of the current plaintext
block, previous plaintext block, and previous ciphertext block. That is, ci = Ek(mi⊕mi−1⊕
ci−1). Here, both m0 and c0 are fixed initialization vectors. To decrypt, Bob computes
mi = Dk(ci)⊕mi−1 ⊕ ci−1.

Remarks

1. Both CFB and OFB are closely related to stream ciphers since in both cases, ci is mi XORed
with some function of stuff that came before stage i. Like a one-time pad and other simple
XOR stream ciphers, OFB becomes insecure if the same key is ever reused, for the sequence
of ki’s generated will be the same. CFB, however, avoids this problem, for even if the same
key k is used for two different message sequences mi and m′

i, it will not generally be the case
that mi⊕m′

i = ci⊕c′i; rather, mi⊕m′
i = ci⊕c′i⊕Ek(ci−1)⊕Ek(c′i−1), and the dependency

on k does not drop out.

2. The different modes differ in their sensitivity to data corruption. With ECB and OFB, if Bob
receives a bad block ci, then he cannot recover the corresponding mi, but all good ciphertext
blocks can be decrypted. With CBC and CFB, he needs both good ci and ci−1 blocks in order
to decrypt mi. Therefore, a bad block ci renders both mi and mi+1 unreadable. With PCBC,
a bad block ci renders mj unreadable for all j ≥ i.

6 CPSC 467a Lecture Notes 5 (rev. 1)

3. Other modes can be easily invented. We see that in all cases, ci is computed by some ex-
pression (which may depend on i) built from Ek() and ⊕ applied to blocks c1, . . . , ci−1,
m1, . . . ,mi, and the initialization vectors. Any such equation that can be “solved” for mi

(by possibly using Dk() to invert Ek()) is a suitable chaining mode in the sense that Alice is
able to produce the ciphertext and Bob is able to decrypt it. Of course, the resulting security
properties depend heavily on the particular expression chosen.

	Data Encryption Standard (DES)
	Feistel Networks
	The Scrambling Function
	Security considerations

	Double Encryption and Group Property
	Group property and birthday attacks
	What happens when original system is not a group?

	Triple DES
	Block Ciphers

