Random Number Generation

1 Introduction

When writing programs, it is often necessary to generate random numbers in a given range or with a given distribution. The basic tool provided by Unix/Linux systems for generating a random number is the function `rand()`, which returns a uniformly distributed non-negative integer r with a value between 0 and RAND_MAX. Typically $\text{RAND_MAX} == \text{INT_MAX}$, the largest integer that can be represented by an `int`. In this document, we describe how to convert the value returned by `rand()` into a random value according to certain other useful distributions.

2 Distribution Over a Limited Range

Suppose one wants to choose an integer k uniformly at random from the set $\{0, \ldots, n-1\}$. That is, each number should be chosen with probability exactly $1/n$.

A commonly-used method in C is to compute $\text{rand()} \% n$. This produces a number in the desired range, but the probabilities aren’t quite correct. The reason is that if n does not exactly divide RAND_MAX, then some numbers are slightly more likely than others. To see this, suppose r is chosen uniformly from the set $\{0, \ldots, \text{RAND_MAX}\}$, and suppose $\text{RAND_MAX} = 8$. Then $r \% 3 = 0$ when r is 0, 3, or 6, $r \% 3 = 1$ when r is 1, 4, or 7, and $r \% 3 = 2$ when r is 2 or 5. Thus 0 and 1 are each chosen with probability $3/8$, but 2 is chosen with probability $2/8$.

One way to fix this problem is to reject values of r that are 6 or 7 and to choose r again. Then the acceptable values of r are in the set $\{0, \ldots, 5\}$, and each occurs with probability $1/6$.

In general, we’d like to use values of r that lie in the range $\{0, \ldots, m-1\}$, where m is the greatest multiple of n such that $m-1 \leq \text{RAND_MAX}$. We might be tempted to try to compute $m = (((\text{RAND_MAX}+1)/n) * n$. Unfortunately, this will lead to integer overflow problems since RAND_MAX+1 and possibly also m are too large to represent as `int`’s. Instead, we compute $\text{top} = m - 1$, the largest acceptable value of r, in a roundabout way:

$$\text{top} = (((\text{RAND_MAX}-n)+1)/n)*n-1)+n.$$

The order of evaluation is important to ensure that no intermediate result will overflow (assuming that n is reasonable), so we use parentheses to make the desired order of evaluation explicit.

Here is some code that should work:

```c
int randRange(int n)
{
    int top = (((RAND_MAX-n)+1)/n)*n-1)+n;
    int r;
    do {
        r = rand();
    } while (r > top);
    return r%n;
}
```
3 Choosing a Point from the Unit Interval

Now we look at the problem of choosing a point x uniformly at random from the unit semi-open interval $[0,1)$. Here, x will be of type double, so we need to convert the integer returned by `rand()` to a double and scale to the correct range. Again, the naïve formula $\text{rand}() / (\text{RAND_MAX} + 1)$ fails because of integer overflow problems, but here the fix is simpler: just compute $\text{rand}() / (\text{RAND_MAX} + 1.0)$. The addition of the double constant 1.0 will cause RAND_MAX to be converted to a double before performing the addition, and the value $\text{RAND_MAX} + 1$ is exactly representable as a double. Of course, this doesn’t really give the uniform distribution since most of the real numbers in $[0,1)$ can never be chosen, but it is a good enough approximation for most applications.

4 Choosing an Element from an Arbitrary Finite Distribution

Let $U = \{0, \ldots, n-1\}$ and let $P : U \rightarrow [0,1]$ be a finite probability distribution, that is, $\sum_{k=0}^{n-1} P(k) = 1$. We consider the problem of choosing an integer k from U according to the distribution P. Note that this is a generalization of the problem in section 2, but here we are willing to accept a small error in the derived probabilities.

The method here is to divide up the unit interval into n non-overlapping segments, where the length of segment j is $P(j)$. Then we generate a random real x in the unit interval using the method of section 3, find the index k of the segment that contains x, and return k. We leave the coding of this method to the reader.