The Legendre and Jacobi Symbols

Let $a \geq 0, n \in \mathbf{Z}^{+}$. Let $\mathrm{QR}(a, n)$ hold if $(a, n)=1$ and a is a quadratic residue modulo n. Let $\operatorname{QNR}(a, n)$ hold if $(a, n)=1$ and a is a quadratic non-residue modulo n (i.e., there is no $y \in \mathbf{Z}_{n}^{*}$ such that $\left.a \equiv y^{2}(\bmod n)\right)$.

For a prime p, the structure of quadratic residues can be fairly easily explained. Let g be a primitive root of \mathbf{Z}_{p}^{*}. Then every element of \mathbf{Z}_{p}^{*} is uniquely expressible as g^{k} for some $k \in\{0, \ldots, p-2\}$.

Theorem 1 Let p be a prime, g a primitive root of $p, a \equiv g^{k}(\bmod p)$. Then a is a quadratic residue iff k is even.

Proof: If k is even, then $g^{k / 2}$ is easily seen to be a square root of a modulo p.
Conversely, suppose $a \equiv y^{2}(\bmod p)$. Write $y \equiv g^{\ell}(\bmod p)$. Then $g^{k} \equiv g^{2 \ell}(\bmod p)$. Multiplying both sides by g^{-k}, we have $1 \equiv g^{0} \equiv g^{2 \ell-k}(\bmod p)$. But then $\phi(p) \mid 2 \ell-k$. Since $2 \mid \phi(p)=p-1$, it follows that $2 \mid k$, as desired.

The following theorem, due to Euler, is now easily proved:
Theorem 2 (Euler) Let p be an odd prime, and let $a \geq 0,(a, p)=1$. Then

$$
a^{(p-1) / 2} \equiv\left\{\begin{aligned}
1(\bmod p) & \text { if } \operatorname{QR}(a, p) \text { holds; } \\
-1(\bmod p) & \text { if } \operatorname{QNR}(a, p) \text { holds } .
\end{aligned}\right.
$$

Proof: Write $a \equiv g^{k}(\bmod p)$.
If $\operatorname{QR}(a, p)$ holds, then a is a quadratic residue modulo p, so k is even by Theorem 1 . Write $k=2 r$ for some r. Then $a^{(p-1) / 2} \equiv g^{2 r(p-1) / 2} \equiv\left(g^{r}\right)^{p-1} \equiv 1(\bmod p)$ by Fermat's theorem.

If $\operatorname{QNR}(a, p)$ holds, then a is a quadratic non-residue modulo p, so k is odd by Theorem 1 . Write $k=2 r+1$ for some r. Then $a^{(p-1) / 2} \equiv g^{(2 r+1)(p-1) / 2} \equiv g^{r(p-1)} g^{(p-1) / 2} \equiv g^{(p-1) / 2}$ $(\bmod p)$. Let $b=g^{(p-1) / 2}$. Clearly $b^{2} \equiv 1(\bmod p)$, so $b \equiv \pm 1(\bmod p) \cdot{ }_{-}^{1}$ Since g is a primitive root modulo p and $(p-1) / 2<p-1, b=g^{(p-1) / 2} \not \equiv 1(\bmod p)$. Hence, $b \equiv-1(\bmod p)$.

Definition: The Legendre symbol is a function of two integers a and p, written $\left(\frac{a}{p}\right)$. It is defined for $a \geq 0$ and p an odd prime as follows:

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{c}
1 \text { if } \operatorname{QR}(a, p) \text { holds; } \\
-1 \text { if } \operatorname{QNR}(a, p) \text { holds; } \\
0 \text { if }(a, p) \neq 1
\end{array}\right.
$$

A multiplicative property of the Legendre symbols follows immediately from Theorem 1 .
Observation 3 Let $a, b \geq 0, p$ an odd prime. Then

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right) \cdot\left(\frac{b}{p}\right) .
$$

[^0]As an easy corollary of Theorem 2, we have:
Corollary 4 Let $a \geq 0$ and let p be an odd prime. Then

$$
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod p)
$$

The Jacobi symbol extends the domain of the Legendre symbol.

Definition: The Jacobi symbol is a function of two integers a and n, written $\left(\frac{a}{n}\right)$, that is defined for all $a \geq 0$ and all odd positive integers n. Let $\prod_{i=1}^{k} p_{i}^{e_{i}}$ be the prime factorization of n. Then

$$
\left(\frac{a}{n}\right)=\prod_{i=1}^{k}\left(\frac{a}{p_{i}}\right)^{e_{i}}
$$

Here $\left(\frac{a}{p_{i}}\right)$ denotes the previously-defined Legendre symbol. (Note that by this definition, $\left(\frac{0}{1}\right)=1$, and $\left(\frac{0}{n}\right)=0$ for odd $n \geq 3$.)

We have seen that if $(a, p)=1$ and p is prime, then the Legendre symbol $\left(\frac{a}{p}\right)=1$ iff a is a quadratic residue modulo p. It is not true for the Jacobi symbol that $\left(\frac{a}{n}\right) \equiv 1(\bmod n)$ implies that a is a quadratic residue modulo n. For example, $\left(\frac{8}{15}\right)=1$, but 8 is not a quadratic residue modulo 15. However, the converse does hold:

Observation 5 If $\left(\frac{a}{n}\right) \not \equiv 1(\bmod n)$, then a is not a quadratic residue modulo n.
The usefulness of the Jacobi symbol $\left(\frac{a}{n}\right)$ stems from its ability to be computed efficiently, even without knowning the factorization of either a or n. The algorithm is based on the following theorem, which is stated without proof.

Theorem 6 Let n be an odd positive integer, $a, b \geq 0$. Then the following identities hold:

1. $\left(\frac{0}{n}\right)= \begin{cases}1 & \text { if } n=1 ; \\ 0 & \text { if } n>1\end{cases}$
2. $\left(\frac{2}{n}\right)=\left\{\begin{aligned} 1 & \text { if } n \equiv \pm 1(\bmod 8) ; \\ -1 & \text { if } n \equiv \pm 3(\bmod 8)\end{aligned}\right.$
3. $\left(\frac{a}{n}\right)=\left(\frac{b}{n}\right)$ if $a \equiv b(\bmod n)$.
4. $\left(\frac{a b}{n}\right)=\left(\frac{a}{n}\right) \cdot\left(\frac{b}{n}\right)$
5. (Quadratic reciprocity). If a is odd, then
$\left(\frac{a}{n}\right)=\left\{\begin{aligned}-\left(\frac{n}{a}\right) & \text { if } a \equiv n \equiv 3(\bmod 4) ; \\ \left(\frac{n}{a}\right) & \text { otherwise } .\end{aligned}\right.$
Theorem6 leads directly to a recursive algorithm for computing $\left(\frac{a}{n}\right)$:
```
int jacobi(int a, int n)
/* Precondition: a, n >= 0; n is odd */
{
    int ans;
    if (a == 0)
        ans = (n==1) ? 1 : 0;
    else if (a == 2) {
        switch (n%8) {
        case 1:
        case 7:
            ans = 1;
            break;
            case 3:
            case 5:
                ans = -1;
                break;
            }
    }
    else if ( a >= n )
        ans = jacobi(a%n, n);
    else if (a%2 == 0)
        ans = jacobi(2,n)*jacobi(a/2, n);
    else
        ans = (a%4 == 3 && n%4 == 3) ? -jacobi(n,a) : jacobi(n,a);
    return ans;
}
```


[^0]: ${ }^{1}$ This follows from the fact that $p \mid\left(b^{2}-1\right)=(b-1)(b+1)$, so either $p \mid(b-1)$, in which case $b \equiv 1(\bmod p)$, or $p \mid(b+1)$, in which case $b \equiv-1(\bmod p)$.

