Problem Set 7

Due before midnight on Friday, December 12, 2008.

Problem 1: Zero Knowledge

Naive Nelson thinks he understands zero-knowledge protocols. He wants to prove to Victor that he knows the factorization of \(n \) (which equals \(pq \) for two large primes \(p \) and \(q \)) without revealing this factorization to Victor or anyone else. Nelson devises the following procedure: Victor chooses a random integer \(x \) \(\text{mod} \ n \), computes \(y = x^2 \text{mod} \ n \), and sends \(y \) to Nelson. Nelson computes a square root \(s \) of \(y \) \(\text{mod} \ n \) and sends \(s \) to Victor. Victor checks that \(s^2 \equiv y \text{mod} \ n \). Victor repeats this 20 times.

(a) Describe how Nelson computes \(s \). You may assume that \(p \) and \(q \) are \(\equiv 3 \text{ mod } 4 \).

(b) Describe why successful completion of this protocol convinces Victor that Nelson really does know the factorization of \(n \) (subject to a very small probability of error). In particular, show that any feasible algorithm able to satisfy Victor’s queries can be converted into a feasible probabilistic algorithm for printing out the factors of \(n \).

(c) Explain how, with high probability of success, Victor can use this protocol to find the factorization of \(n \). (Therefore, this is not a zero-knowledge protocol.)

(d) Suppose Eve is eavesdropping and hears the values of each \(y \) and \(s \). Is it likely that Eve obtains any useful information? (Assume no value of \(y \) repeats.)

Problem 2: Indistinguishability

Happy Hacker wanted a good source of random bits, so he downloaded a cryptographically secure pseudorandom sequence generator \(G(s) \) from the Internet. \(G \) maps seeds of length \(n \) to binary sequences of length \(\ell \). Knowing the importance of seeding the generator with truly random bits, he arranged to obtain the seed \(s \) from \(/\text{dev/random}\). Having done so, he couldn’t see any good reason to “waste” the random bits in \(s \), so he decided to output the string \(s \cdot G(s) \), giving \(n + \ell \) output bits in all. In other words, he built a new pseudorandom number generator \(G'(s) = s \cdot G(s) \).

Unfortunately, \(G'(s) \) is not cryptographically secure, even when seeded properly with a truly random seed \(s \). Explain why, and describe a judge \(J \) that can distinguish the distribution \(G'(S) \) from \(U \). Here, \(S \) is the uniform distribution over the seed space, and \(U \) is the uniform distribution over binary strings of length \(n + \ell \).

Problem 3: Shamir Secret Splitting

Let \((x_1, y_1), \ldots, (x_5, y_5)\) be shares of a secret \(s \) in a \((2, 5)\) secret splitting scheme over \(\mathbb{Z}_p \). Assume one of the shares has been corrupted and does not lie on the dealer’s polynomial, but nobody knows which the bad share is.
For each value of $k = 1, \ldots, 5$, answer the following questions with respect to an arbitrary subset R of shares, where $|R| = k$.

(a) Can it be determined if R contains a bad share? If so, describe how. If not, explain why not.

(b) If it can be determined that R contains a bad share, can the bad share be identified? If so, describe how. If not, explain why not.

(c) Can the secret s be recovered from R (despite the possible presence of one bad share in R)? If so, describe how. If not, explain why not.

[Note that you cannot assume that it is necessary to identify the bad share in order to reconstruct the secret; there might well be a procedure that always comes up with the correct s even without knowing which of the shares is bad.]