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Solution to Problem Set 3
Due on Wednesday, October 22, 2008.

In the problems below, “textbook” refers to Douglas R. Stinson, Cryptography: Theory and Prac-
tice, Third Edition, Chapman & Hall/CRC, 2006.

Problem 1: Feistel Network

Textbook, problem 3.2.

Solution:
In each stage of the Feistel netowrk, it works as follows:

Li+1 = Ri (1)

Ri+1 = Li ⊕ f(Ri,Ki) (2)

After applying n stages of the Feistel network to the plaintext L0 and R0 with the key schedule
K0, · · · ,Kn−1, we get the ciphertext Ln and Rn.

Now we show that the decryption can be done by applying the same encryption algorithm to Ln
and Rn, with the reversed key schedule Kn−1, · · · ,K0. Switching the two sides of (1) and applying
(⊕f(Ri,Ki)) to both sides of (2), we get

Ri = Li+1 (3)

Li = Ri+1 ⊕ f(Ri,Ki) (4)

Therefore, after applying the algorithm to Ln andRn with keyKn−1, we get Ln−1 andRn−1. Then
applying the algorithm to Ln−1 and Rn−1 with key Kn−2, we get Ln−2 and Rn−2. Repeating the
same procedure for n times with the key schedule Kn−1, · · · ,K0, we get L0 and R0 at the end.

Problem 2: DES Complementation Property

Textbook, problem 3.3.

Solution:
y = DES(x,K) and y′ = DES(c(x), c(K)). The heart of DES is the Feistel network, whose

one stage algorithm is described by (1) and (2). For DES(L0R0,K), define L′0 = c(L0), R′0 =
c(R0) and K ′i = c(Ki), which leads to another instance DES(L′0R

′
0,K

′). We will show that for
any stage of the Feistel network, L′i = c(Li) and R′i = c(Ri).

• Base: the case when i = 1.

For instance DES(L0R0,K),

L1 = R0 (5)

R1 = L0 ⊕ f(R0,K0) (6)
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For instance DES(L′0R
′
0,K

′),

L′1 = R′0 = c(R0) = c(L0) (7)

R′1 = L′0 ⊕ f(R′0,K
′
0)

= c(L0)⊕ f(c(R0), c(K0)) (8)

Since f(Ri,Ki) uses the bitwise ⊕ operation to combine input bits of Ri (after expansion)
and Ki before the permutation in S-boxes, and ⊕ operation is associative and commutative,

c(r)⊕ c(k) = r ⊕ k (9)

Combining (8) and (9) gives

R′1 = c(L0 ⊕ f(R0,K0)) = c(R1) (10)

• Induction: Assume the claim holds for all i < n, consider the case when i = n.

For instance DES(L0R0,K),

Ln = Rn−1 (11)

Rn = Ln−1 ⊕ f(Rn−1,Kn−1) (12)

For instance DES(L′0R
′
0,K

′),

L′n = R′n−1 = c(Rn−1) (13)

R′n = L′n−1 ⊕ f(R′n−1,K
′
n−1)

= c(Ln−1)⊕ f(c(Rn−1), c(Kn−1))
= c(Ln−1 ⊕ f(Rn−1,Kn−1)) (14)

Therefore, after 16 stages of Feistel network, we can get L′16 = c(L16) and R′16 = c(R16).
Concatenating L′16 and R′16, we conclude

y′ = L′16R
′
16 = c(L16R16) = c(y) (15)

Problem 3: DES S-box S4

Textbook, problem 3.11(a). [Omit part (b).]

Solution:
Each S-box Si maps an input of six bits to an output of four bits, i.e., Si : {0, 1}6 → {0, 1}4.

Si can be depicted by a 4× 16 array whose entries are integers in the range [0, 15]. Given a six-bit
input B = b0b1b2b3b4b5, we compute Si(B) as follows. The two bits b0b5 determine the binary
representation of a row r of Si, where 0 ≤ r ≤ 3, while the four bits b1b2b3b4 determine the binary
representation of a column c of Si, where 0 ≤ c ≤ 15. Then we find the entry corresponding to row
r and column c of the 4× 16 array, and use it binary representation as the four-bit output.

For the special property of S4, we need to check the binary representation of each entry one by
one. For example, the first entry of the second row is (13)10 = (1101)2, and the first entry of the
first row is (7)10 = (0111)2. Applying the mapping, we have

(0, 1, 1, 1) 7→ (1, 0, 1, 1)⊕ (0, 1, 1, 0) = (1, 1, 0, 1) (16)

We put the results for all the 16 entries in the table below.
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c first row mapping second row
0 (7)10 = (0111)2 (0, 1, 1, 1) 7→ (1, 0, 1, 1)⊕ (0, 1, 1, 0) = (1, 1, 0, 1) (13)10 = (1101)2
1 (13)10 = (1101)2 (1, 1, 0, 1) 7→ (1, 1, 1, 0)⊕ (0, 1, 1, 0) = (1, 0, 0, 0) (8)10 = (1000)2
2 (14)10 = (1110)2 (1, 1, 1, 0) 7→ (1, 1, 0, 1)⊕ (0, 1, 1, 0) = (1, 0, 1, 1) (11)10 = (1011)2
3 (3)10 = (0011)2 (0, 0, 1, 1) 7→ (0, 0, 1, 1)⊕ (0, 1, 1, 0) = (0, 1, 0, 1) (5)10 = (0101)2
4 (0)10 = (0000)2 (0, 0, 0, 0) 7→ (0, 0, 0, 0)⊕ (0, 1, 1, 0) = (0, 1, 1, 0) (6)10 = (0110)2
5 (6)10 = (0110)2 (0, 1, 1, 0) 7→ (1, 0, 0, 1)⊕ (0, 1, 1, 0) = (1, 1, 1, 1) (15)10 = (1111)2
6 (9)10 = (1001)2 (1, 0, 0, 1) 7→ (0, 1, 1, 0)⊕ (0, 1, 1, 0) = (0, 0, 0, 0) (0)10 = (0000)2
7 (10)10 = (1010)2 (1, 0, 1, 0) 7→ (0, 1, 0, 1)⊕ (0, 1, 1, 0) = (0, 0, 1, 1) (3)10 = (0011)2
8 (1)10 = (0001)2 (0, 0, 0, 1) 7→ (0, 0, 1, 0)⊕ (0, 1, 1, 0) = (0, 1, 0, 0) (4)10 = (0100)2
9 (2)10 = (0010)2 (0, 0, 1, 0) 7→ (0, 0, 0, 1)⊕ (0, 1, 1, 0) = (0, 1, 1, 1) (7)10 = (0111)2

10 (8)10 = (1000)2 (1, 0, 0, 0) 7→ (0, 1, 0, 0)⊕ (0, 1, 1, 0) = (0, 0, 1, 0) (2)10 = (0010)2
11 (5)10 = (0101)2 (0, 1, 0, 1) 7→ (1, 0, 1, 0)⊕ (0, 1, 1, 0) = (1, 1, 0, 0) (12)10 = (1100)2
12 (11)10 = (1011)2 (1, 0, 1, 1) 7→ (0, 1, 1, 1)⊕ (0, 1, 1, 0) = (0, 0, 0, 1) (1)10 = (0001)2
13 (12)10 = (1100)2 (1, 1, 0, 0) 7→ (1, 1, 0, 0)⊕ (0, 1, 1, 0) = (1, 0, 1, 0) (10)10 = (1010)2
14 (4)10 = (0100)2 (0, 1, 0, 0) 7→ (1, 0, 0, 0)⊕ (0, 1, 1, 0) = (1, 1, 1, 0) (14)10 = (1110)2
15 (15)10 = (1111)2 (1, 1, 1, 1) 7→ (1, 1, 1, 1)⊕ (0, 1, 1, 0) = (1, 0, 0, 1) (9)10 = (1001)2

Problem 4: Practice with mod

Read pages 3–4 of textbook and then work the following:

(a) Textbook, problem 1.1.

(b) Textbook, problem 1.2.

(c) Textbook, problem 1.3.

(d) Textbook, problem 1.4.

Solution:

• Problem 1.1

(a) By the division theorem, 7503 = 92× 81 + 51, so 7503 mod 81 = 51.

(b) By the division theorem, −7503 = −93× 81 + 30, so (−7503) mod 81 = 30.

(c) By the division theorem, 81 = 0× 7503 + 81, so 81 mod 7503 = 81.

(d) By the division theorem, −81 = −1× 7503 + 7422, so (−81) mod 7503 = 7422

• Problem 1.2

By the division theorem, a = m
⌊
a
m

⌋
+ (a mod m). Therefore, we have

(−a) mod m =
(
−m

⌊
a

m

⌋
− (a mod m)

)
mod m

= (−(a mod m)) mod m
= (m− (a mod m)) mod m (17)
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Because a 6≡ 0 (mod m), it is easy to see that 0 < a mod m < m, which implies 0 <
m− (a mod m) < m. Therefore, we have

(m− (a mod m)) mod m = m− (a mod m) (18)

Combining (17) and (18), we reach the conclusion that

(−a) mod m = m− (a mod m) (19)

• Problem 1.3

By definition, a ≡ b (mod m)⇔ m | (a− b). By the division theorem,

a = m

⌊
a

m

⌋
+ (a mod m) (20)

b = m

⌊
b

m

⌋
+ (b mod m) (21)

. Subtracting (21) from (20) gives

(a− b) =
(
m

⌊
a

m

⌋
+ (a mod m)

)
−

(
m

⌊
b

m

⌋
+ (b mod m)

)
(22)

Together with the fact that m | (mu+ v) iff m | v, we have

m | (a− b)⇔ m | (a mod m− b mod m) (23)

Because (i mod m) ∈ Zm, m | (a mod m − b mod m) iff a mod m = b mod m. In sum,
we have shown

a ≡ b (mod m)⇔ a mod m = b mod m (24)

• Problem 1.4

By the division theorem, a = km + b, where 0 ≤ b < m. It is obvious b = a mod m.
Dividing both sides of the first equation by m, we have a

m = k+ b
m . 0 ≤ b < m implies that

0 ≤ b
m < 1, and thus k is the largest integer that is less than or equal to a

m , which is precisely
the definition of

⌊
a
m

⌋
. Therefore,

a mod m = b

= a− km

= a−
⌊
a

m

⌋
m (25)

Problem 5: Extended Euclidean Algorithm

Textbook, problem 5.3. Show your work.

Solution:
a) 17−1 mod 101 = 6

i ri ui vi qi
1 101 1 0
2 17 0 1 5
3 16 1 -5 1
4 1 -1 6 16
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b) 357−1 mod 1234 = 1234− 159 = 1075

i ri ui vi qi
1 1234 1 0
2 357 0 1 3
3 163 1 -3 2
4 31 -2 7 5
5 8 11 -38 3
6 7 -35 121 1
7 1 46 -159

c) 3125−1 mod 9987 = 1844

i ri ui vi qi
1 9987 1 0
2 3125 0 1 3
3 612 1 -3 5
4 65 -5 16 9
5 27 46 -147 2
6 11 -97 310 2
7 5 240 -767 2
8 1 -577 1844

Problem 6: Linear Diophantine Equations

Textbook, problem 5.4. Show your work.

Solution:
gcd(57, 93) = 3

a b
93 57
57 36
36 21
21 15
15 6
6 3
3 0

s = −13, t = 8

i ri ui vi qi
1 19 1 0
2 31 0 1 0
3 19 1 0 1
4 12 1 0 1
5 7 2 -1 1
6 5 -3 2 1
7 2 5 -3 2
8 1 -13 8
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Problem 7: RSA Encryption

[This is problem 6.8.2 from Trapp & Washington, “Introduction to Cryptography with Coding The-
ory, Second Edition”, Pearson Prentice Hall, 2006.]
Suppose your RSA modulus is n = 55 = 5× 11 and your encryption exponent is e = 3.

(a) Find the decryption modulus d.

(b) Assume that gcd(m, 55) = 1. Show that if c ≡ m3 (mod 55) is the ciphertext, then the
plaintext is m ≡ cd (mod 55). Do not quote the fact that RSA decryption works. That is
what you are showing in this specific case.

Solution:
(a) Since n = 55 = 5 × 11, we have φ(n) = (5 − 1) × (11 − 1) = 40. Now we apply the

Extended Euclidean algorithm to find d given that e = 3.

i ri ui vi qi
1 40 1 0
2 3 0 1 13
3 1 1 -13

Therefore, we have d = 40− 13 = 27.

(b) The question asks us to prove m ≡ c27 (mod 55), given c ≡ m3 (mod 55) and
gcd(m, 55) = 1. Starting from the first condition, we have

c ≡ m3 (mod 55)⇒ c27 ≡ (m3)27 ≡ (m40)2 ×m (mod 55) (26)

Euler’s theorem says, if gcd(x, n) = 1, then

xφ(n) ≡ 1 (mod n) (27)

Since φ(55) = 40 and gcd(m, 55) = 1, combining (26) and (27) gives

c27 ≡ (m40)2 ×m ≡ m (mod 55) (28)

Because congruence is commutative, (28) implies

m ≡ c27 (mod 55) (29)
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