
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 467b: Cryptography and Computer Security Handout #3
Professor M. J. Fischer January 20, 2010

Random Number Generation

1 Introduction

When writing programs, it is often necessary to generate random numbers in a given range or
with a given distribution. The basic tool provided by Unix/Linux systems for generating a random
number is the function rand(), which returns a uniformly distributed non-negative integer r with
a value between 0 and RAND MAX. Typically RAND MAX == INT MAX, the largest integer that can
be represented by an int. In this document, we describe how to convert the value returned by
rand() into a random value according to certain other useful distributions.

2 Distribution Over a Limited Range

Suppose one wants to choose an integer k uniformly at random from the set {0, . . . , n − 1}. That
is, each number should be chosen with probability exactly 1/n.

A commonly-used method in C is to compute rand()%n. This produces a number in the
desired range, but the probabilities aren’t quite correct. The reason is that if n does not exactly
divide RAND MAX, then some numbers are slightly more likely than others. To see this, suppose r
is chosen uniformly from the set {0, . . . ,RAND MAX}, and suppose RAND MAX = 8. Then r%3 = 0
when r is 0, 3, or 6, r%3 = 1 when r is 1, 4, or 7, and r%3 = 2 when r is 2 or 5. Thus 0 and 1 are
each chosen with probability 3/8, but 2 is chosen with probabily only 2/8.

One way to fix this problem is to reject values of r that are 6 or 7 and to choose r again. Then
the acceptable values of r are in the set {0, . . . , 5}, and each occurs with probability 1/6.

In general, we’d like to use values of r that lie in the range {0, . . . ,m − 1}, where m is the
greatest multiple of n such that m − 1 ≤ RAND MAX. We might be tempted to try to compute
m = ((RAND MAX + 1)/n) ∗ n. Unfortunately, this will lead to integer overflow problems since
RAND MAX+1 and possibly also m are too large to represent as int’s. Instead, we compute top =
m− 1, the largest acceptable value of r, in a roundabout way:

top = ((((RAND MAX− n) + 1)/n) ∗ n− 1) + n.

The order of evaluation is important to ensure that no intermediate result will overflow (assuming
that n is reasonable), so we use parentheses to make the desired order of evaluation explicit.

Here is some code that should work:

int randRange(int n)
{
int top = ((((RAND_MAX-n)+1)/n)*n-1)+n;
int r;
do {

r = rand();
} while (r > top);
return r%n;

}



2 Random Number Generation

3 Choosing a Point from the Unit Interval

Now we look at the problem of choosing a point x uniformly at random from the unit semi-
open interval [0, 1). Here, x will be of type double, so we need to convert the integer re-
turned by rand() to a double and scale to the correct range. Again, the naı̈ve formula
rand()/(RAND MAX+1) fails because of integer overflow problems, but here the fix is simpler:
just compute rand()/(RAND MAX+1.0). The addition of the double constant 1.0 will cause
RAND MAX to be converted to a double before performing the addition, and the value RAND MAX+1
is exactly representable as a double. Of course, this doesn’t really give the uniform distribution
since most of the real numbers in [0, 1) can never be chosen, but it is a good enough approximation
for most applications.

4 Choosing an Element from an Arbitrary Finite Distribution

Let U = {0, . . . , n − 1} and let P : U → [0, 1] be a finite probability distribution, that is,∑n−1
k=0 P (k) = 1. We consider the problem of choosing an integer k from U according to the

distribution P . Note that this is a generalization of the problem in section 2, but here we are willing
to accept a small error in the derived probabilities.

The method here is to divide up the unit interval into n non-overlapping segments, where the
length of segment j is P (j). Then we generate a random real x in the unit interval using the method
of section 3, find the index k of the segment that contains x, and return k. We leave the coding of
this method to the reader.


	Introduction
	Distribution Over a Limited Range
	Choosing a Point from the Unit Interval
	Choosing an Element from an Arbitrary Finite Distribution

